
ADAo96 310 LEHIGH UNIV BETHLEHE14 PA F/B 9/1
TESTABILITY AND RELIABILITY OF LSI.CU)
JAN 81 A K SUSSKIND F30602-78-C-0292

UNCLASSIFIED RADC-TR-80-384 NL

*mummmmummnnmm

RAIC.
MWng TwI. Reor

TESTABILITY AND RELIABILITY
OF LSI

o Lehigh University LL

Dr. A1fre K. Susind

APROVED FOR PUBLIC RELESE; OISTUSGUTION UNUMITED

DTIC
MELECTEMI

Laboratory Dtrectors' Fund No. LD9408CI MAR 13 1981

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

A- Qd e Q40I

This-report has been reviewed by the RADC Public Affairs Office (PAY
and Is releasable to the National Technical Information Service (NTIS). At
NTIS it will be relesabl to the general public, including foreign nations.

RDCR-T-O-384 has been reviewed and is approved for publication.

MARK W. LEVI
Project Engineer

APPROVED: a.9 rA0otQ. %

DAVID C. LUKE, Colonel, USAF
Chief, Reliability & Compatibility Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee Is no longer employed by your organization, please
notify RADC (RED), Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list..

Do not return this copy. Retain or destroy.

! ,

k _ __ ,e.0

UNCLASSIFIED
SECURITYCLASSIFICATION OF THIS PAGE (140bon ot. gotred)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. P T "ago12. GOVT ACCESSION NO. 11. RECIPIENT'S CATALOG NUMBER

L RDC T8-384 77~4 A~ C _ __ _ __ _ _

4 TITLE (' Subtilte) 5. .yrIERRCA

3 inal ehnicaliet
TESTABILITY AND RELIABILITY OF LS 5Sp7 t3 um8V

7. N (a)S. CONTRACT ON GRANT NUMSER()

Dr. Alfred K.)Susskind F306,02-78-C-,y92

9. PERFORMING ORGANIZATION NAME AND ADORES! 10, PROGRAM ELEMENT PROJECT, TASK
Lehigh University AREA & WORK UN IT NUMBERS

Bethlehem PA 18015 611L018C ~

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (RBRP) .. an mm.81
Griffiss AFB NY 13441 "'.0,S UMERO PAGES

_______________________________________130
f4. MONITORING AGENCY NAME B ADOUESJIf diffeorent fromt Controlling Office) IS. SECURITY CLASS. (of Chia report)

.. - UNCLASSIFIED
Same Cr,

IS. OECLASSIFICATION/OOWNGRADING

N/A SCHEDULE
IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract enteredj in Block 20. If different troa Report)

Same

I0. SUPPLEMENTARY NOTES

RADO Project Engineer: Mark W. Levi (RBRP)

This effort was totally funded by the Laboratory Directors' Fund.
29. KEY WORDS (Contlinue on r*,rs* etdo it necesary and Identify by block number)
Testing Walsh Functions Built-In Test
Testability Array Logic
Reliability Logic Arrays
Testability Measure PLA
Exhaustive Testing BIT
40. ABSTRACT (C-ontlnue, on reverse side It necesary and identify by block number)
A number of studies related to testing, testability, and reliability were
made and the major results are reported. One study was concerned with the
relationship between testing and reliability, which lies in the lack of
dependability caused by incomplete testing. An approach to calculating
this lack of assurance, based on binary decision diagrams, was formulated
and programmed. Initial experience with a first version indicates that
care must be exercised in optimizing programming, if large networks are'to

DD 1473 EDITION OF I NOV 83 IS OBSOLETE UNLSTTn (over)

SECURTY CLASSIFICATION OF THIS PACE (When Daea Entectd)

-2

j UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Wea Dja Entere,)

be handled economically.

A major part of the report is concerned with an exhaustive form of the 2
different Walsh coefficients, of which two are particularly useful. The
first is just the conventional counting of the number of ones in the

response. The second is shown to detect any pin faults, in any combinatiol

with a particularly simple test-equipment implementation that may well
serve as a BIT (built-in-test) design.

The application of Walsh-coefficient verification to array logic is

investigated. Simple PLA's are shown to be readily testable; arrays with
flip-flops are also studied and methods for improving their testability
are given.

The formulation of a testability measure (TM) is described. The TM is
calculated on the basis of a gate-level network description. The actual

calculations are based on approximations, but their validity can be

verified by precise calculations. When the approximations are used, the

task of evaluating the testability is much less than finding actual tests.
-"

UNCLASSIFIED

SECURITY CLASSIFICATI09 OF 1- 'AGefW7n Date Ent..d)

EVALUATION

The final report describes significant additions to the body of knowledge

needed to define and measure the testability of LSI. The initial reach of the effort

was toward a complete definition and measure of testability of real LSI and its

relationship to reliability determination. Significant progress has been made

toward that goal by creating the outlines for a new measure of testability of the

logical representation of combinational logic. This must be used in conjunction

with designs based on such structures as level sensitive scan design or its

variations. A serendipitous result has been the discovery of a built-in-test method

which is well adapted to inclusion in such designs and which combines great

compaction of the test with a provable coverage of any number of input stuck-at

faults or equivalent.

The effort used Laboratory Director Funding and was carried out in

furtherance of the Device Reliability Research Program TPO.

MARK W. LEVI
Project Engineer

~r

SUMMARY

Testing of LSI is a challenging task which is currently not handled

well enough. The difficulties arise primarily from the high logic density,

which permits enormous complexity, and the severe access constraints due

to pin limitations, which exclude the availability of a significant number

of test points. In addition, currently modeling of faults cannot be done

with high confidence. Furthermore, users of devices frequently have

incomplete know' 1ge of the detailed make-up of a device or the make-up

is so complex that a detailed description would not be useful.

To overcome these diffizulties, design for testability has to be

practiced and this work is based on that premise. The key to testability

is a disciplined approach to design, guided by principles that are

demonstratably cost effective from the testing point of view. Foremost

among these is design which permits the conversion of sequential circuits

to combinational circuits (CC's). This can be done by the scan-in/out,

also called LSSD, design approach. We formulate the testing of CC's as

the verification of Walsh coefficients. This type of testing does not

hinge on fault modeling; only the assessment of its efficacy needs such

a model. Its disadvantage is the required exhaustiveness, hence length,

of the test. But the hardware required to execute it is very simple;

so simple, in fact, that the required test generator and data storage

can be incorporated into a VLSI chip, leading to a feasible form of BIT

(built-in test).

From the point of view of the designer of the semiconductor chip,

regular structures are highly desirable and therefore array logic has

gained significant acceptance. We found that for simple PLA's (programmed

logic arrays) exhaustive testing by verifying one or two Walsh coeffi-

cients is a rather thorough technique and conclude that simple PLA's are

preferable over a more sophisticated array (the Associative Logic Matrix)

with respect to testing by simple, and hence perhaps built-in, means.

I

For the case of arrays containing flip-flops, we consider testing by

means of diagnosing sequences and indicate techniques for making these

designs more readily testable than the ones currently proposed.

This report also describes a testability measure (TM) that can be

applied to a gate-level description of a logic network. It is based on

approximating well defined controllability and observability measures

that reflect the ease with which tests can be found. The approximations

make it feasible to execute the TM calculations with much less effort

than would be required to find the actual test and so the TM should be

helpful in appraising designs. The approach taken is such that the

approximations can be compared with precise calculations.

We also describe a start in establishing the link between testing

and reliability. This we do by calculating the number of those input

patterns for which lack of testing has not assured the correct output.

Our method is based on the use of binary decision diagrams, which makes

it implementation independent. But the computational complexity still

seems to be substantial and brief experience with a first program shows

that care has to be exercised to allow complex logic networks to be

handled at acceptable cost.

2

U!

TABLE OF CONTENTS

PAGE

SUMMARY 1

TABLE OF CONTENTS 3

1. TESTABILITY OF LSI AND ITS IMPACT ON RELIABILITY 5

1.1 Design for Testability 6

1.2 Testability Measure 8

1.3 Testability and Reliability 9

1.4 About this Report 13

2. TESTING BY VERIFYING WALSH COEFFICIENTS 17

2.1 Overview 17

2.2 Computation of Walsh Coefficients 22

2.3 Spectral Approach to Pin-Fault Testing 24

2.4 Use of other Walsh Coefficients 28

2.5 Lead-Fault Detection 29

2.6 Discussion 32

2.7 Tests for Shorts 33

3. TESTING OF LOGIC ARRAYS 40

3.1 Testing Simple PLA's 42

3.11 Crosspoint Defects 44
3.12 Stuck Lines 45
3.13 Shorts 46
3.14 More General Decoder Form and 48

Application of C0
3.15 Testing by Verifying CALL 52

3.2 Testing the Associative Logic Matrix 53

3.21 Effect of Other Faults in the ALM's 55
3.22 Discussion 67

3.3 Fault-Detection in Programmable Storage/ 67
Logic Arrays

3.31 Effects of Faults 76
3.32 Change in the Number of States 79

Due to Faults

3

:4

Page

3.0 TESTING OF LOGIC ARRAYS (continued)

3.33 Modification of the Circuits 85
3.34 Testing Methods for Sequential 88

Circuits
3.35 Application of Testing Methods to the 92

FSM in the SLA

4.0 A TESTABILITY MEASURE 99

4.1 Formulation of the Testability Measure 100

4.2 The Basic Strategies 104

4.3 Controllability Calculations 106

4.4 Example of Controllability Calculations 109

4.5 Observability Calculation 110

4.6 Some Examples 115

4.7 Testability of Sequential Circuits 117

4

SI

1. TESTABILITY OF LSI AND ITS IMPACT ON RELIABILITY

In light of today's state-of-the-art, we need not justify the basic

premises on which the work reported on here is based:

1. LSI (large-scale integration) has already achieved a dominant

role in the design of electronic equipment.

2. LSI will continue to offer more function per unit space, power,

and cost.

3. Applications of LSI will continue to mushroom.

4. Because of the complexity of LSI building blocks, their testing

is difficult. The main causes contributing to the difficulty are

a. The number of possible faults in a single unit is very
large; a reasonable order of magnitude will soon be 10S.

b. Access to ircuitry is severely limited by pin limitations.
c. Thorough tests require extensive test sequences. These are

time consuming and require expensive test equipment. Thus
careful testing is costly.

d. Users frequently lack information sufficient to permit
thorough testing.

5. Although priblems in testing LSI are now widely recognized,

current market forces are such that many present-day commercial products

are not "testable".

What do we mean by "testable"? Testability expresses the ease with

which one can assure himself that the unit on hand operates correctly.

Note that we did not refer to faults in our definition. This is so

because we fear that not enough is known about faults in LSI to permit

assurance that all faults are revealed by the popular testing schemes.

In fact, as logic density increases, faults are becoming ever more complex:

Pattern sensitivity, which has been recognized for a long time in such

high-density parts such as ROM's and RAM's, will surely grow in signif-

icance; multiple faults are ever more likely; shorts--or phenomena akin

to them--will be of greater concern; faulty manufacturing steps are

increasingly likely. But much as we advocate that testability reflect

,

what we believe to be the true issue, namely the verification of

functional integrity, we hasten to admit that this point of view is

difficult to quantify, as we shall see later and also in Section 4 of

this report.

Just as there is widespread agreement about the difficulty of

testing LSI, so there is broad consensus in support of design for

testability. By this is meant a collection of techniques that lead to

implementations that are testable. We underline "collection" to place

emphasis on the need to make use of a variety of techniques that tugether

will achieve testability without penalizing performance and still leave

the unit affordable. One must include here the various methods of self-

test, be they via built-in test apparatus, or via the classical redundancy

techniques exemplified by coding techniques. It is now clear that we

have "sitting on the shelf" a great deal of know-how for effective

utilization of redundancy; LSI and further advances in micro-electronics

can make its application not only feasible, but also essential for real-

time application. In the work reported on here, we did not pursue the

direction of redundancy, but one would be remiss if he failed to keep in

mind the important contributions that redundancy can make to testability.

1.1 Desigin for Testability

Having excluded (purely for the sake of limiting the scope of our

work) further consideration of redundancy, we have looked at testability

as broadly as possible. We recognize the value of already existing

design guide lines for achieving testability, such as are given in

Ref. [1.1], and feel that because of space limitations it would not be

helpful to enter here into a discussion of those issues and remedies

that [1.1] and others deal with and carefully document (see the review

articles, Refs. 1.2 and 1.3). It has long been recognized that no other

factor has so large an impact on testability as the extent to which

flip-flops are used and how they are interconnected. Certainly the

entire literature reflects that, and we emphasize that one of the most

6

II

potent tools for achieving a testable design is the scan-in/out scheme,

also called LSSD (see Refs. 1.4 and 1.5). The central feature of LSSD

is the means for eliminating the feedback when in the test mode, and

surely it is the single most powe'ful measure that a designer could

employ to make his unit testable.

Another very powerful technique for achieving testability is parti-

tioning logic into blocks of manageable size while in the test mode. For

good reasons it is often called "divide and conquer". Of course, this

too, is not a new concept, but it also has not gained sufficient applica-

tion in commercial products. Both scan-in/out and partitioning are now

used--but by organizations other than the chip suppliers. The designer

who must work with commercial building blocks is, at this time, unable

to implement either scan-in/out or partitioning in the test mode, and

yet their benefits are widely recognized. It has been the captive (in-

house) IC facilities that have actually implemented them; the major

semiconductor houses have so far failed to make them available.

We expect that the availability of scan-in/out and partitioning will

become much wider. There appear to be no alternatives that offer com-

parable benefits. We see the present situation analogous to that in

software, where when more complex programs had to be written, there

emerged "structured programming". And just as structured programming

was made feasible by the advent of low-cost, high-performance semicon-

ductor devices, so structured design will be feasible. Indeed, it will

not only be feasible, but essential. To be sure, it entails some sacri-

fice of real-estate on the chip; not all of the gates and connections

will be needed in operation, but they will be essential to the achievement

of dependable electronics. We feel confident that the price for giving

up 10 to 20% of the real estate will be acceptable, particularly when

weighed against the alternative, which is bleak for those who require high

reliability.

The third major method for aiding testability is to adhere as much

as possible to regular structures and to make repeated use of the same

7

regular structure. This has other major design benefits :; addition to

aiding testability: circuit design is expedited and reduced in cost;

mask design is similarly simplified; more extensive simulation becomes

:easible; and turn-around time is reduced. The benefits of repeated use

of regular strudtures are also widely recognized [1.6, 1.7] and array

logic has been developed to implement this approach. From the point of

view of testing, array logic offers the advantages of simplicity and

ease of understanding. There is nothing so manageable as two-level

logic (e.g., NOR/NOR) and the arrays that have been described in the

literature or modest variants of it and are:certainly not difficult to

tackle for testing. But as we shall see in Section 3, not all arrays are

equal from the point of view of testing.

In summary, at this time the top three means for achieving

testability are

1. handling, or rather elimination, of feedback;

2. breaking up complex entities into manageable units;

3. repeated use of simple, powerful, but straightforward arrays.

1.2 Testability Measure

One of the major goals of this project has been the measurement of

testability. We made more than one effort in that direction. At first,

we thought one would find it useful to differentiate between the test-

ability of a function and the testability of the realization at hand.

But for good reasons we later found that this approach was not fruitful.

The approach that we finally developed, which is fully described in

Section 4, is essentially a measure of the ease with which a lead can

be tested. We have had satisfactory experience with it, but it is still

being experimented with (by a graduate student who will report on his

experience at a later time.)

As our ideas developed, we found that the measure may well have

good use in test generation, where those leads that score low in

observability and controllability (or maybe just one of these) are prime

8

candidates for algorithmic test generation based on such schemes as the

D-algorithm or one of its equivalents. We mean that when a lead scores

low, it is probably very efficient to pick that lead as the "site"

of a fault, i.e., to begin with the D cube of a fault on that line.

Alternatively, we could algebraically find a test by (1) "provoking" a

fault on that line and (2) "propagating" it to the output.

Of course, our testability measure, because it shows"where the shoe

hurts", serves well as a means for pinpointing leads to which outside

connections would be particularly useful.

The last part of Section 4 shows our approach for measuring the

testability of sequential circuits. We have chosen an iterative-circuit

scheme, but are not yet in a position to evaluate its potential.

We must emphasize that the notion of testability has meaning only

in light of some assumptions of what is good and what is bad. If one

accepts a method of testing that is essentially exhaustive, then all

circuits with the same number of pins are equally testable. We believe

that there will be many applications where exhaustive tests are not only

feasible, but highly desirable. For one thing, they no longer require a

fault model such as "stuck-at". We have developed such an exhaustive

test scheme and describe it fully in Section 2. In conjunction with

LSSD, we expect it to be a useful test method.

1.3 Testability and Reliability

Certainly testing, or rather lack of testing, can be considered a

factor in establishing the reliability of a device or larger assembly.

When looked at from this point of view, one might consider testing as

establishing the dependability of the unit under consideration, and we

have taken this point of view in approaching the connection between

testing and reliability. When a device (or unit) is fully tested, then

its input/output is fully verified, and we can fully depend on its

9

VJ

output. If the device is not fully tested, however, then there will be

circumstances under which the proper input/output behavior is not assured.

The fraction of such unverified cases is the measure of unreliability

contributed by incomplete testing.

How shall dependability be computed? One way would be based on the

fault coverage of a test, or rather test sequence. This is a number that

is often computed in test generation and is derived by a simulator program

that is used to score a proposed test sequence. In those cases where the

elaborate computer aids involved in scoring tests are available, it may

well be that fault coverage is a good means for assessing dependability.

One might question some of the limitations of this procedure. Simulators

usually assume that only single faults of the stuck-at type can occur.

But we must recognize that any kind of dependability assessment is bound

to involve some assumptions about the nature of what could go wrong, and

in our work to be described below we also had to make some assumptions

about the nature of possible malfunctions. A second difficulty with

using conventional fault coverage for measuring dependability comes from

the fact that it is not easy to translate the coverage into a quantita-

tive measure related to input/output behavior. Not only does the simu-

lator score fail to separate undetectable--and hence harmless--faults from

those that do affect circuit behavior, but we know of no way, other than

through solving complex Boolean equations, for quantitatively appraising

the effect of faults over all possible input conditions. The effort to

solve Boolean equations is substantial, and so we searched for an

alternative approach.

Because our work is addressed to very large-scale integration, we

judged it appropriate to consider situations where detailed gate models

are not available or too complex to consider. We found that a promising

tool for the analysis of switching circuits for this kind of situation

is the binary decision diagram, BDD, first proposed by S. B. Akers [1.8],

[1.9]. BDD's are a promising tool for handling large Boolean functions

without taking resort to complex algebraic manipulations. One of their

10

features is that they can be used to perform functional rather than

implementation-dependent analysis and, because they take the form of

binary decision trees, BDD's lend themselves to efficient computer

manipulations. These take the form of path tracing in binary trees,

and standard algorithms are available in the literature for that

purpose; see [1.10].

Our work with BDD's formed only a small part of our effort and at

this writing we have only preliminary results that indicate that the

approach based on BDD's does offer promise. Because the study of the

dependability due to incomplete testing is not complete, we do not

include a major, detailed section on it, but summarize the work in

the following few paragraphs.

A program was written to answer the following two questions:

Given the BDD of a combinatorial function (a) how many of the input

combinations result in a false output due to a given fault pattern?

(b) What are the tests for the given fault pattern? The assumed fault

patterns were not only stuck-at faults in any multiplicity, but also

bridging (short) faults which can be treated by the "dominant low (high)"

model (under this model, if there is a short between two leads, then

whenever one is low (high), so is the other).

The program was written for the PASCAL-20 compiler running on

Lehigh University's DECsystem-20. The memory image of the program

takes 14,800 36-bit words of main memory. Each node in the graph uses

six words of memory, so that a full ten-variable tree requires 6,150 words

of storage. In order to accommodate large BDD's, the program was

structured to minimize memory requirements. This results in greater

running time than necessary and, as is so often the case, other trade-

offs between running time and memory requirements could have been made.

As test cases, particularly unfavorable trees and fault patterns

were chosen (these may well be worst cases). For these cases, the data

below list, with number of variables (independent inputs) as the parameter,

the CPU time consumed for (a) calculation of the number of input combina-

tions for which the output is incorrect (this is column A) and

11

A . _ .A ,

(b) that calculation plus finding the tests that detect the given fault

pattern (this is column B).

Number of CPU time (in secs)

independent consumed

variables nodes A B

1 3 0.06 0.13

2 5 0.06 0.12

3 9 0.06 0.15

4 17 0.07 0.17

5 33 0.08 0.23

6 65 0.12 0.36

7 129 0.17 0.68

8 257 0.3 1.38

9 513 0.54 2.99

10 1025 1.09 6.59

11 2049 2.12 14.46

12 4097 4.35 33.50

Several conclusions can be drawn from this table:

1. For more than seven independent variables, the running time

grows exponentially; it doubles with every added input. Hence large

BDD's must be avoided.

2. The calculation of dependability (column A) is significantly

faster than finding tests. (If an algebraic approach to finding

dependability were used, this would probably not be so.)

3. The data listed is for just one fault pattern. In actual

application, a number of such runs (one or more per input lead) would

be made. An effort should therefore be made to reduce the running

time. Hence the tracing algorithms used should be made more efficient.

(In the program used here, for example, no provision was made to avoid

tracing a given subgraph more than once; avoidance of this repetition

would have required additional memory.)

12

It seems app~ropriate here to point out that BDD's need not be

limited to cases where the details of the implementation are omitted.

We have been able to show that (via a subscripted algebraic notation)

it is possible to represent a gate model of a combinational circuit

by a BDD. But we fear that this results in such great proliferation

of the nodes that practical applications will be gravely limited.

1.4 About this Report

Section 2 presents a novel testing scheme. We give the theory

on which it is based (the Walsh-Rademacher transform for discrete

functions) and show its implementation and its efficacy against

stuck-at faults. We do recognize, as we stated before, that the stuck-

at fault model is not necessarily appropriate in LSI, but we are forced

to use it by default, i.e., it is the only analytically tractable fault

model available and was therefore used to permit generalized statements.

In Section 3 we apply testing by verification of Walsh functions

to array logic. Three types of arrays are investigated. The last of

these, and the most complex of them, is particularly tailored to the

realization of sequential functions. We treat its testing from the

point of view of diagnosing sequences and recommend specific ways for

improving its testability through design modifications.

The testability measure is devcloped in Section 4. We illustrate

its application by means of simple examples and describe its extension

to sequential circuits.

Each of the topics discussed requires substantial background.

Because of time limitations, we were not able to make each section

self-sufficient and would therefore expect that some readers will have

to take recourse to additional readings. For that prupose, we have

provided a number of references. These were selected with the aim of

listing the most helpful articles and books, and no attempt was made

to be exhaustive.

13

Contributions to the work reported on here were made by several

graduate students. The work in Section 3 was carried out by Suk I. Yoo,

and the novel ideas in Section 3.3 are entirely his. Stephen L. Kessler

worked out some of the examples given in Section 4 and served as a

valuable sounding board for the testability-measure concepts as they

were developed. The analysis of binary decision graphs was programmed

by J. Patrick McHugh and some of his results are cited in this report.

14

References

1.1 W. M. Consolla and F. G. Danner "An Objective Printed Circuit

Board Testability Design Guide and Rating System," Rome Air

Development Center, Griffiss Air Force Base, N.Y. 13441,

RADC-TR-79-327, January, 1980. AD# B051738L.

1.2 T. W. Williams and K. P. Parker "Testing Logic Networks and

Designing for Testability," COMPUTER, Oct. 1979, pp. 9-21.

1.3 J. P. Hayes and E. J. McCluskey "Testability Considerations in

Microprocessor-Based Design," COMPUTER, March 1980, pp. 17-26.

1.4 E. B. Eichelberger and T. W. Williams "A Logic Design Structure

for LSI Testability,'Proc. 14th Design Automation Conf., June 1977,

IEEE Publication T7CM1216-lC, pp. 462-468. See also other

related papers given at the same session.

1.5 B. Koenemann, J. Much, G. Zwiehoff "Built-In Logic Block Observa-

tion Techniques," Digest of Papers, 1979 Test Conference, Cherry

Hill, N.J., IEEE Publication 79CH1509-9c, pp. 37-41.

1.6 Special Section on Programmable Logic Arrays, IEEE Trans. on

Comp., Sept. 1979, C-28,9, pp. 593-627.

1.7 C. Mead, L. Conway Introduction to VLSI Systems, Addison Wesley,

Reading, MA, 1980. Particularly Section 3.10.

1.8 S. B. Akers, "Binary Decision Diagrams," IEEE Trans. on Elect.

Comp., C-27, 6, 1978, pp. 509-516.

15

1.9 S. B. Akers, "Functional Testing with Binary Decision Diagrams,"

Digest of Papers, 8th Annual International Conf. on Fault-Tolerant

Computing, Toulouse, France, June 1978, IEEE Publication

T8CM1286-4C, pp. 75-82.

1.10 D. E. Knuth The Art of Computer Programming, Addison-Wesley,

Reading, MA 1973.

16

2. TESTING BY VERIFYING WALSH COEFFICIENTS

2.1 Overview

The testing scheme investigated here works as follows: Refer to

Fig. 2.1. The n-input combinational circuit under test is driven by

an n-bit counter that
n

a. generates all 2 distinct patterns, each exactly once;

b. generates a parity signal p with value 0(l) if the present

pattern of counter bits or a selected portion has an odd

(even) number of zeros;

c. signals the beginning and end of the pattern generation

process.

The response z of the unit under test (UUT) is scored by a reversible

counter that, when in the run mode, operates in accordance with the

following table:

ARITHMETIC
p z OPERATION

0 0 +1

0 1 -1

1 0 -1

1 1 +1

For each new number generated by the driving counter, one such arith-

metic operation is performed by the reversible counter (RC). Prior to

the start of the test, the driving counter causes the RC to be preset

to zero and after the last (2 n-th) number has been generated by the

driving counter the contents of the RC are examined by the comparison

circuit. In the case where p is derived from all of the bits in the

driving counter, if the RC has contents of zero (00.. .0), the circuit

under test is faulty; otherwise the circuit is declared good. We shall

call this the "CALL test". In the case where p is derived from a proper

subset of the bits in the driving counter, the final contents of the RC

are compared with a stored number, N. If the contents of the RC differ

17

Good/Faulty

Comparison

Circuit

z Reversible

Counter (RC)

p-1
(Odd- Start/
Even) Stop

Unit

Under

Test

(UUT)

Driving Counter Done

Fig. 2.1 Tester for Verifying

Walsh Coefficients

18

from N, the UUT is declared faulty.

When p is determined by all of the bits in the driving counter,

i.e., when a CALL test is made, our method of testing will be shown to

detect all input stuck-at-constant-value faults (often called pin faults),

in all possible combinations, singly or multiply. Moreover, since many

of the possible faults in the interior of the circuit under test are

equivalent to pin faults, this method will also detect these.

We illustrate the CALL test by means of the simple example in

Table 2.1, where the fault-free circuit is a "majority" (also called

"2-out-of-3" or "voter") circuit, and the faulty unit has input c

stuck-at-l.

OUTPUT RESPONSE CONTENTS RESPONSE CONTENTS
OF DRIVING P OF FAULT- OF OF OF
COUNTER FREE UUT RC FAULTY RC

UUT
abc

000 0 0 +1 0 +1

001 1 0 0 0 0

010 1 0 -1 1 +1

011 0 1 -2 1 0

100 1 0 -3 1 +1

1 0 1 0 1 -4 1 0

1 1 0 0 1 -5 1 -1

111 1 1 -4 1 0

Table 2.1 Example of Test Operation

The CALL test can be used on any combinational circuit, except that

a circuit which when fault-free would end with the RC having a final

value of zero must have its design somewhat modified. A particularly

simple modification consists of the addition of a single new input q and
m

an AND-circuit such that it realizes the modified function F , defined

as

Fm(x 1,X2 ... xq) = F(x1 ,x2,..,x)q + x ...x *q

19

" - ' " - . .. - I II l - L

Here F is the n-variable function that the original circuit was

intended to realize and x! denotes either x. or x.. When q = 0,
1 1 1

Fm = F, and this is the mode in which the circuit is used in its

application. In testing, however, the new terminal q is made to take

on both the value 0 and the value 1. Thus the driving counter has

n + I stages for testing an n-input modified logic block.

For internal stuck-at lead-fault detection, a scheme similar to

that illustrated in Fig. 2.1 is used, and the detection of these faults

can be made concurrently with the detection of pin faults. The same

driving counter is used; a second RC is added, and its odd-even

terminal is controlled by a second p-signal that is derived from a

proper subset of the bits in the driving counter. A particularly

interesting case is where p is set to the constant 1. A more complete

treatment of lead-fault detection is given in Section 2.5, and the

detection of shorts is discussed in Section 2.7.

The virtues of our method of testing are:

1. The equipment needed for testing is very simple, as is evi-

dent from Fig. 2.1.

2. The data storage and test-program requirements are so small

that they can be economically hardwired, as is also evident

from Fig. 2.1.

3. Test preparation requires negligible effort. For pin-fault

detection, one merely needs to determine in the part-design

process if F, the object function, needs to be modified into

Fm as specified above. The cost of the modification, if needed,

is small. For lead-fault detection, a simple calculation

determines the final value in the RC to be monitored.

4. Because of the above three features, all the test equipment

can be built into an LSI chip at modest cost. Thus the tech-

nique offers a feasible means for BIT (built-in-test).

5. In the case of pin-fault detection, the validity of the test

procedure is shown to depend only on the function mechanized.

(In the case of internal leads, it also depends on the structure

20

'doo

of the internal fan-out.) Thus our method is substantially

independent of the detailed gate implementation and device

technology used.

6. All networks with an equal number of input pins become

equally testable.

7. The driving counter can be shared by a multiplicity of test

set-ups. Its length is determined by the circuit to be

tested with the largest number of inputs.

8. The sequence in which the 2n distinct input patterns are

generated is irrelevant, so that a variety of counter types

(polynomial binary, Gray code, etc.) is applicable. Even

linear feedback shift-registers with maximum cycle length are

applicable, providing provision is made to generate the all-

zero (00.. .0) pattern. This may be advantageous in BIT

implementations where the LSSD (also called scan-in/scan-out)

design approach is used, because then shift registers are

already available.

The weaknesses of our method of testing are:

1. The test duration limits the size of the network to be tested

to somewhere between 20 and 25 input pins. A 20-pin network

requires about 106 tests, which at 1 MHz would take 1 sec.

This limitation is, however, not severe.

2. To achieve complete and assured lead-fault detection, the

designer is somewhat constrained with respect to the internal

network fan-out. This limitation is, however, not severe.

3. The method is limited to combinational logic and must there-

fore be combined with LSSD in practical applications.

4. The method is presently clumsy when fault location (rather

than detection) is desired.

Our method of testing is based on the verification of so-called

Walsh coefficients. That is, the test determines whether or not the

function realized by the network on hand has the same partial "Walsh

spectrum" as the nominal function.

21

Because Walsh spectra are not widely used in logic design or

switching, a few words about them are in order. A Walsh spectrum

of a function consists of a number of coefficients that can be made

complete, so that the set of Walsh coefficients can be made to uniquely

represent the given function. Thus the Walsh spectrum is similar to

the Fourier spectrum, and both are examples of transformations. In

the case of Walsh spectra, however, there is no physical interpreta-

tion similar to harmonics; the coefficients are merely numbers.

What little we need to know here about the theory of Walsh spectra

is given in the next section. Those interested in a thorough mathemat-

ical treatment will find it in Ref. 2.1, while definitions in engineer-

ing terms are given in Ref. 2.2.

2.2 Computation of Walsh Coefficients

For the case of switching functions F of n variables, the Walsh

coefficients are easily computed. First of all, the logical value 0 (1)

is associated with the arithmetic value -1 (+1). Second, with F there

are associated exactly 2n points in the domain of F, which we call the

"vertices of the function". Each coefficient is computed by multiply-

ing the value (either +1 or -1) of the function at each vertex with

the corresponding value (either +1 or -1) of the corresponding Walsh

function, defined below, and then summing all the partial products

over all 2n vertices. Thus each coefficient has a value that lies in

the range -2 to +2n .

The 2n Walsh functions, Wi, are defined as follows: W0 = 1; the

remaining functions are formed from products of the (arithmetic) values

of the independent variables. There are as many W., i0 as there are

non-empty subsets of the set of all independent variables, i.e., a
total of 2n - -, and they are derived from all possible (arithmetic)

products of the n variables: one at a time, two at a time, etc. For

example, the functions W2 and W1, for n = 3 each have the eight values

listed below, derived from x2 and x1 together with x3, respectively.

22

WU

xl 2x 3 W W F W2F W F
1 2 3 2 1 0_3 2 1,3

0 00 -1 +1 0 +1 -1

0 0 1 -1 -1 0 +1 +1

0 1 0 +1 +1 0 -1 -1

0 1 1 +1 -1 1 +1 -1

1 0 0 -1 -1 0 +1 +1

1 0 1 -1 +1 1 -1 +1

1 1 0 +1 -1 1 +1 -1

1 1 1 +1 +1 1 +1 +1

Table 2.2 Examples of Walsh Functions and Walsh Coefficients.

In the above chart we have also entered the logic values of the majority

function and indicated the values of the (arithmetic) products W2.F and

W 1,3F at each vertex. By performing the summations, we can obtain two

of the eight Walsh coefficients of the majority function: C2 is the

sum of the entries in the second column from the right, hence C2 = 4;

C13 is the sum of the entries in the rightmost column. (That the W.

are a normal set similar to the exponential functions in Fourier

transforms is illustrated in the example by summing W2"W1,3 over all

vertices; the result is indeed zero.)

In some calculations, it is convenient to keep in mind that in a

logical sum

F = T1 + T2 + + Tm

that is disjoint, i.e., where no more than one term T. can be true, a1

simple arithmetic sum represents C of F:

cF 1 2 cM £CCOF = CO1 + C2 + --- + CO = E

Here CO (which is based on W =1 for all vertices) denotes the Walsh

coefficient C of F and CI the Walsh coefficient C of T
0 01

23

Henceforth, we will call the Walsh coefficient C the "first"

coefficient and will denote the Walsh coefficient that is based on the

Walsh function W1 ,2,...,n' which is based on all the variables,

by CALL.

We call attention to the fact that C0 is a direct measure of the

number of true vertices of the function. This is true because

C0 = VT FV

where VT(VF) is the total number of vertices where F = i(0). But

VT + VF = 2n , so

C = VT + VT - 2n = 2VT - 2n

For the example majority function, VT = 4, so C = 2 x 4 - 8 = 0. For

the exclusive - OR function F = a 0b, VT = 2 and so CO = 2 x 2 - 4 = 0

also. In fact, it is easy to show by induction on the number of vari-
ables that C = 0 for all parity functions a(Db(D ...)z.

In this report we shall not need to consider the inverse trans-

formation, i.e., the process of finding F, given all of its Walsh

coefficients. Suffice it to say that the inverse transformation can

be performed and, like the process of finding the Ci given F, it is

unique.

2.3 Spectral Approach to Pin-Fault Testing

Since testing is the verification of a function and each function

has a unique Walsh spectrum, we can say that the role of fault detec-

tion is to determine whether or not the box on hand has the Walsh

spectrum intended. As one might expect, unless some assumptions are

made about the allowable deviations of a network from its nominal

behavior, one would have to determine all of its C. - all 2n of them.1

(This is analogous to verifying that a network has the correct response

at every input vertex--a frequently impractical approach.) We will

24

[S

show that under the assumption of pin faults, however, the computation

of the single Walsh coefficient C suffices for fault detection.
ALL.

This is stated more precisely in the following two theorems:

Theorem 2.1. Given a function F(xix 2 ",. Xn) with CALL 0 O.

If in the implementation of F one or more of the x. is stuck,1
the value of CALL of the implemented function becomes zero, no
matter what the pattern of the stuck inputs is.

Theorem 2.2. Given a function F(xlX 2,. .. xn) with CAll = 0.

Then the function Fx(XX2 . x n
q) = F + xlX ...x q has

(x11x2, n 1 has
1,,., = Cm = ±2, and if in the implementation of Fm any1,2,.. .,n,q ALLm

one or more of the x. or q is stuck, the value of C ALL of the

implementation becomes zero, no matter what the pattern of the

stuck inputs is

Proof of Theorem 2.1

Consider the function F expressed as a sum of standard products

in the usual Boolean notation:

F = aoRiR2...tn-iAn + alR1R2-.Rn-ixn + a2 l .. Xn-lRn
(2.1)

a3x1x2-Xln-ixn + + + a2n_1 x1X2 Xn-iXn

where each ai has value 0 or 1 and is the entry in the corresponding

row of the truth table. In this expansion call those products with

an even (odd) number of barred variables "even products" ("odd

products").

Now make the association of x. with -1, x. with +1, a. = 0 with1 1 1

-1, and ai = 1 with +1. If one then interprets the above Boolean

equation in ordinary arithmetic, he has the right-hand side precisely

in the form of the computation of the Walsh coefficient CALL.

Equation (2.1) can be written as the difference between two arithmetic

summations:

25

CALL= a. - Xaj (2.2)

all i all j
associated associated
with even with odd
products products

To illustrate this notation, consider n = 2, so that

F a 0xlx2 + a1X1X2 + a2xx2 + a31X2 (Boolean)

CALL = (a0+a3) - (a1+a2) (arithmetic)

Suppose now that in the realization of F an input x. is stuck-in-i
1

(stuck-in-0). Then for every nominal product mk = xx 2 ... x...x*xk 1 2 1 n1
(mk = x*x*... x....x*) containing xi(xi) the associated coefficient in

1 2 a n11
(), ak , is set equal to the coefficient a' of the product m 1 = x 2x*...
xi *' x*(mk=xlx2- * * x...x*) which differs from mk only in the literal

Ri(xi). For example, if in a two-variable function the input x2 is

stuck-in-l, a0 is replaced by a1 and a2 by a3, so that the faulty

function Fx2 - can be written in terms of the coefficients a. of the

fault-free function as follows:

Fx-l 1 1= aXX2 a1Xx2 + a3x1x2 + a3x1x2

The value of C of F 2 l is (a+a,)-(a +a3) = 0. In general,

with xn stuck-in-i, a0 is replaced by a1 , a2 by a3, a4 by a., a6 by a7,

etc. With XnI stuck-in-0, for another example, a2 is replaced by a0,

a6 by a4, a1 0 by a., etc. Observe that any one stuck-at fault replaces

each of one half of all the coefficients by another coefficient that is

unit-distant from it. Also, observe that the original coefficient and

its replacement for the fault-free case are in different summations in

(2.2). Therefore, after the replacement of every ak by the correspond-

ing ak, the two summations in (2.2) become identical, so that their

difference is zero, and hence CALL in the presence of the fault has

value zero. If more than one input is stuck, the replacement is even

26

more widespread. In the two-variable example, with xl-stuck-1 and

x2-stuck-0, for example, a0 and a, and a. are replaced by a2, so that

again CALL takes on the value zero. In general, two stuck lines cause

groups of four coefficients to become equal, three stuck lines cause

groups of eight coefficients to become equal, etc. But no matter what

the size of each group of coefficients that is made equal by the

(possibly multiple) fault, in the fault-free case half of that group

belong to the first summation in (2.2) and the other half to the second

summation, so that CALL takes on the value zero, as claimed in the

theorem.

Proof of Theorem 2.2

The expansion of Fm in standard products differs from that of F

only in multiplication of each term in (2.1) by q and the addition of

one term:

Fm= a x -xx nq + ax x .. xn q + .. + a x x2...xn q + xlx 2 ...x~q

0 1 2- n 1 1 2* n 2n_ 1 2 n 12 n

(2.3)

Note that the last term has a coefficient of 1, and all the other

products ending in q have coefficient 0 and are therefore omitted.

By definition

C m = m t±2+ all a (2.4)
1,2,...,n,q ALL +

all i all j
associated associated
with even with odd
products in products in
(2.3) and q (2.3) and q

Suppose xlx. .--x* is even (odd), i.e., the number of barred vari-
12 n

ables is even (odd). The term +2(-2) accounts for all vertices where

q = 1, as will now be shown. Among the vertices where q = 1, 2 n - are

even (odd) and at all but one of these the logic value of P is 0, so

that these contribute -(2 n 1) + 1 = -2 ' + 2 (2n- 2). At all of the

27

2 n - odd (even) vertices where q = 1, F = 0, and so these contribute
n- nI n-i(-2n -l) (-1) = +2n- (-2) to the Walsh coefficient.

The two summations in (2.4) are precisely those that make up CALL

of F, the unmodified function, and by assumption they cancel one

another. Thus C has the value +2 (-2) for the fault-free

case, as claimed.

Since modified function Fm has CALL which is nonzero, Theorem 2.1

applies to it and therefore the second claim is valid.

2.4 Use of other Walsh Coefficients

The method of fault detection that we have described makes use of

only one Walsh coefficient, CALL, or its extension, CALL. What about

the other Walsh coefficients?

The following theorem is not difficult to prove:

Theorem 3. If a realization of F(xX 2,...,Xn) has been subjected

to pin faults on any subset of the lead set L {i,j,...,k}, then

the Walsh coefficient CM of the function realized by the faulty

network will have value zero if the set M equals or contains the

set L.

From this, it follows that if for the nominal (fault-free) func-
tion C # 0, then the computation of C will end up with the value zero

toCM M
if the network on hand suffers from pinfaults on any subset of the set L.

If for the nominal function CM = 0, then one can modify F to

Fm = F- + xxt... x q
q k

This makes the nominal function have CM # 0, and yet the faults in L

will result in CM = 0. In other words, Theorems 1 and 2 deal with

the special case of L = M = 11,2,...,n).
But note that whereas a fault set will set CM to zero, no claim is

made that if CM = 0, then a subset of the fault set L is present. In

fact, we have found examples where CM = 0 when the actual fault set

28

was not contained in L. Thus we have not been able to use the other

Walsh coefficient, for fault location, i.e., determination of which

pins are faulty. We have, however, been able to apply the coefficient

C for the detection of interior faults, as is shown in the next

section.

2.5 Lead-Fault Detection

We will make use of the term inversion parity, IP, of a path. By

that we shall indicate whether the number of inverters along that path

from the given starting point to the network output is even or odd.

For example, in Figure 2.2, the IP starting at lead 2a is odd along

both paths starting at 2a, whereas the IP starting at lead 2b is even.

Hence, the IP starting at lead 2 is odd for some paths and even for

others.

If the IP of every path starting at a lead L is the same (such as

in the case of the two paths starting at lead 2a), then we say for

short "L has unique IP", and then we can always write the network out-

put in terms of the logic signal xL on lead L in a sum-of-products

form which contains xL only in uncomplemented (complemented) form if

the IP of L is even (odd).

Suppose xL appears only in uncomplemented form; the function

realized by the network is then said to be "positively unate in xL"

In this case if lead L is stuck-at-l (s-a-O), the result will be an

increase (decrease) over the fault-free case in the number of input

patterns for which the output takes on the value 1. On the other hand,

if the function realized is negatively unate in xL (it appears only in

complemented form) and L is s-a-I (s-a-O), the result will be a decrease

(increase) in the number of vertices for which the output takes on the

value 1. In either case, uniqueness of the IP of a non-redundant lead

implies that a fault will surely change the total number of ones in

the function realized by the network.

29

xi 6

x 2

4x4

4b 8

2b

Fig. 2

30

We are now ready to prove the following:

Theorem 2.4. In a network form so restricted that after every

initial fan-out point (in traversing from the independent inputs

to the output) every lead has unique IP, any combination of

stuck-at faults on all the leads up to the initial fan-outs can

be detected by verifying CALL and any single stuck-at fault on

leads following fan-out points can be detected by calculating C0.

To show the validity of the theorem, note that faults on leads up

to the first fan-out points are equivalent to pin faults, so that C AL

does indeed check for these as stated in Theorems 2.1 and 2.2. The

rest follows from the previous discussion.

Theorem 2.4 should not be interpreted to imply that faults on

leads before initial fan-out can be detected as well as simultaneously

occurring single faults on leads following initial fan-out.

Theorem 2.4 gives us sufficient conditions for designing networks

that can be fully tested for stuck-at faults by verifying only CO and

CALL* The conditions do not appear severe. They are met, for example,

by the three-level NAND networks discussed in Ref. 2.3. Moreover,

every two-level network satisfies the conditions of Theorem 2.4.

Note that the implementation of checking for single faults follow-

ing initial fan-out need not take the form of full-fledged computation

of C0. This is so because CO = VT' -V 0 =
2VT - 2n, and hence it is

sufficient merely to count the number of cases where the output has

value 1 as the input takes on the 2n different combinations.

Whether the computation is done according to the first form or the

second is a matter of implementation convenience. If the determination

of C is to be made simultaneously with that of CALL, a separate

response counter is needed, one for each coefficient. Then the counter

determining C0 need not be bidirectional if the second form is used

(one simply counts l's in the response), and is therefore simpler. On

the other hand, if C0 and C ALL are to be determined sequentially by

31

running all 2 n input combinations twice, then the bidirectional counter

used in determining CALL can be left unchanged for use in computing C0

by setting p = 1 and calculating according to the first form.

2.6 Discussion

Our work has shown that two simple calculations--those of C and

C ALL--suffice to do a rather good job of testing. Our proofs could

claim only single-fault coverage for faults on most internal leads,

but we know from our (limited) experience that many combinations of

simultaneous internal faults are also detected. At this writing, the

total fault coverage would have to be determined through simulation.

This, of course, is a costly process and violates the spirit of this

work, which aims to make testing--both its planning and execution--as

simple as possible. To achieve this, we place constraints on the

designer that are believed to be sufficiently lenient to make the

application of our concepts practicable. Should it turn out that the

demand for unique IP of leads past initial fan-out is too restrictive

and either one or more additional output pins are available or built-

in test (BIT) is to be implemented, then one can treat the lead with

non-unique IP as an additional output and calculate its Walsh coeffi-

cients C0 and CALL. This, of course, increases the number of compu-

tations required, and again serial or parallel determination of the

set of Walsh coefficients can be used.

To enlarge the fault detection capability of our scheme, we

suggest that when determining CALL we do not merely test the RC for

the final contents of 00...0, but rather compare it with the value

that the fault-free function has. Then the UUT will only pass if it

has the correct value of CALL' Experience has shown that many addi-

tional faults will then be detected, and if we check both C0 and CALL,

we anticipate very good fault coverage. In fact, if we want to achieve

testing for short-circuits, it will be useful to compare the actual

value of CALI, and C with the nominal values, as will be shown in the

next section.

32

2.7 Tests for Shorts

An important cause of faults in dense logic circuits are shorts

and tests for detecting their presence cannot, in general, be found

with the same ease as tests for stuck-at faults. In this section, we

take a novel approach to the problem of test generation for shorts by

exploring the short-detecting capability of Walsh coefficients. Our

work is based on the following premises:

1. We start with no more than the functional description of the

logic, not a gate model. Thus we will be dealing with "shorts between

input pins."

2. When there is a short between a lead pair, the lead with the

smaller signal dominates. In the positive logic convention, this means

that a pair of leads where one is nominally in the zero state and the

other in the one state will have both leads in the zero state when

there is a short between them. We will briefly indicate later how to

modify our analysis when the larger signal dominates.

Analytically, our premises lead to the following formulation.

Assume that we wish to express the effect of a short between leads a

and b. We begin by expanding the function mechanized by the logic

block, f, around a and b:

f = abR + abR + abR + abR (2.5)
0 1 2 3(25

The R!s are called residues and are, in general, functions of the1

remaining variables. For example, we expand the majority function of

five variables (a,b,c,d, and e), which is true when three or more of

the inputs are true:

f = ab(cde) + ab(cd+ce+de) + ab(cd+ce+de) + ab(c+d+e)

Here R0 =cde; R1 = R2 = cd + ce + de; R 3 = c + d + e.

Due to a short between a and b, when their signal levels are

nominally different, the function realized will be the same as when

33

V€

both are low. So (2.5) becomes, in the presence of the short between

a and b:
fab = aR0 +a bR0 + abR0 + abR3 (2.b)

2.71 Verification of C0

In accordance with Section 2.2, because our expansions in (2.1)

and (2.2) are disjoint, we have

CO = CO + CO + C2 + C3 (2.7)

where C0 is the first Walsh coefficient of Ri, C0 is the first Walsh

coefficient of function f, and the addition in (2.7) is arithmetic.

Similarly, from (2.6)

Cab = CO C + CO + C3 = 0 C3 (2.8)
0 0 0 0 0 0 0

ab
Verifying C0 will test for a short unless C = CO and this

occurs if

0 1 2
2C = C + C2 (2.9)0 0 0

0To illustrate, we return to the majority function, for which C0 = 2 -

2 3 -6;C 0 C 2 8 - 8 =0; C = 14 - 8 = -6. We find that (2.9) is
000

not met, and draw the conclusion that verifying C0 of the majority net-

work "3-out-of-5" will check for a short between leads a and b. More-

over, since the majority function is symmetric, it follows that

verifying C0 will detect any pair of input shorts. (Indeed, reference

to Pascal's triangle shows that this result is not limited to five

variables.)

But let this pleasing result not lead to overly optimistic expec-

tations. Consider the parity function, f = a(D b(Z) ... (z. Its

residues Ri are also parity functions (or complements of parity

functions), which means that they each have as many true vertices as

false ones. Consequently, for all residues R., C0 = 0 and so (2.9),

34

the condition of failure, is met. Thus verifying CO of parity functions

cannot detect shorts and so it is wise to consider other Walsh

coefficients.

2.72 Other Walsh Coefficients

We can generalize on the basis of (2.5) and (2.6) as follows.

Let C. denote Walsh coefficient C. of R. and C the Walsh coeffi-J j a,b,j

cinet of the function on hand, where j denotes any subset of the set

of all variables excluding a and b. Then, again because (2.5) is a

disjoint decomposition, we have

c =c 0 -C1 -c2 + (2.10)a,b, j 3 .3 .3

where the signs denote ordinary arithmetic. Due to a short between a

and b, we have the circuit behaving as in (2.6), which has

the Walsh coefficient

Ca' b :0 0 - C0 + C3 = C - C0 (2.11)
a,b,j j 3 1 3 j

Then verifying Ca,b,j detects the short unless (2.10) equals (2.11), i.e,

2C? 1= c + C (2.12)
. .3

For the example of the parity function, we find for j = {c,d,..,z),

C0 = C. = -C. = -C.. Consequently, (2.12) is not met and verifying CALL
.3 .3 .3 3

of parity functions serves as a test for all pairs of pin shorts,

because parity functions are symmetrical in the input variables.

An interesting property of Walsh coefficients can now be derived.

From (2.5)

C. = C. + C. + C2 + C. (2.13).3 3 .3 .3 .

and from (2.6)

C.' b = C. + C. + C. + C. = 3C. + C. (2.14)

35

Verifying C. will fail to detect the short between a and b if (2.13)

equals (2.14), or

2C0 = C. + C.

3 3 3

But that is exactly (2.12) above, and so we conclude that:

Theorem 2.5. Test for a short between a and b based on

Ca,b, j has the same power as one based on C.

Theorem 2.5 leads one to conclude that C0 and CALL are particu-

larly powerful for detection of shorts, since they provide the same

information about shorts between m and n as Cm,n and CALL_{m,n},

respectively, for all pairs m and n. Keep in mind that Cm, n
(CALL-{m,n}) also provides information about shorts not between m

and n; that information is not necessarily obtained by testing

only C0 (CALL).

The power of Caj, where j is any subset of the variables not

including a and b, for detecting a short between a and b can be

assessed as follows. From (2.5)

c . -C0 - C 1 C2 +c3
a,j J j j J

c = -cO c l _C2+C
b,j J J j J

and from (2.6)

C a' = -C. - C. 0 CO + C.
a j J J J

Coefficient C . will fail to Yeveal a short between a and b ifa,b .
C =C . or

a.3 a
C.1 C.2 (2.15)

Also from (2.6)

Cab -C. + C. - C. C.
b,j j j j j

36

- A.- "

and so Cb, i will fail to reveal a short between a and b under the same

conditions as Caj

The more Walsh coefficients one verifies, the more likely he is

to detect a fault, no matter what that fault is. To what extent one

will want to go beyond verifying C0 and/or C ALL will depend on (1)

the particular short patterns he anticipates; after all, it is prob-

ably unlikely that any short pattern whatsoever can occur and (2) the

particular function on hand. It should be clear that by writing

appropriate expansions such as (2.5) and (2.6), it is st.aightforward

to decide whether or not a given pattern of shorts will be detected

by a given Walsh coefficient.

Finally, we want to emphasize that our initial assumption of

"dominating zeros" can be easily changed to "dominating ones", i.e.,

where a pair of shorted leads has a one whenever one or more has a

nominal one. For example, under the dominating ones assumption (2.6)

becomes

fab = abR0 + abR + abR + abR (2.6A)

and then the faulty network will yield the Walsh coefficient
Ca b = 0 - - 3 C (2.11A)
a~b,j J J J J

so that the condition for failure to detect the short between a and b

becomes

2C 3 = C + C2 (2.12A)

Similar changes can be made in the other results derived above.

2.73 Function Modification

As we showed before, a simple functional modification can make a

given function "stuck-at Walsh-testable". Here we show by an elementary

example that a simple functional change can also make a given function

"short Walsh-testable".

37

Consider again the parity function, which we showed is not

testable for shorts by VPifying C0. Suppose we insist on using C0

for testing purposes. If we then build the function of n + 1

variables

P = (a(b(D ...®)z)q + a+ ... zq

and set q to 0 in the operational mode, verifying C while letting

q take on both values under test does in fact detect a short between

any lead pair. This can be shown as follows:

0
0 ft l = c0 [(c(ed(® ... (G)z)q + Ea ... iq]

- 2 (2n3+1) _ 2n

1 Co f(c d® .. (z)q] 2
o = ,a=0,b=l 0

a=l ,b=0

2(2n-3 2 n

Clearly condition (2.9) is not met and so C0 for the modified function

is a valid test for shorts between any lead pair. (The same simple

modification also works under the assumption of dominating ones.)

Unlike the case of tests for stuck-at pins, there is no one

simple modification that one can suggest; there are just too many

possible sets of shorts (2n_-2) and too many functions. In general,

one will be able to go a long way by use of simple functions, such

as AND (used in the above example) and OR.

38

References

2.1 K. G. Beauchamp, "Walsh Functions and Their Applications,"

Academic Press, 1975.

2.2 R. B. Lackey and D. Meltzer, "A Simplified Definition of

Walsh Functions," IEEE Trans. on Computers, C-20, 2,

February 1971, pp. 211-213.

2.3 K. K. Chakrabarti, A. K. Choudhury, and M. S. Basu,

"Complementary Function Approach to the Synthesis of Three-

Level NAND Network," IEEE Trans. Comp., Vol. C-19, 6,

June 1970, pp. 509-514.

30

3. TESTING OF LOGIC ARRAYS

The work reported on in this section is an outgrowth of our studies

summarized in the previous section, where we treated the problem of test-

ing as equivalent to verifying Walsh coefficients. We began by investi-

gating the extent to which the verification of a small number of Walsh

coefficients results in good fault coverage in logic arrays.

It turns out that for ordinary (two-level) PLA's, verification of

the coefficient C0 (the one based on the Walsh function W0 = 1, analo-

gous to d-c in Fourier analysis) is a very powerful test and is likely to

be a practical means for thoroughly and yet economically testing ordinary

PLA's. Except for the detection of pin faults, C0 is more powerful than

checking CALL. As shown in Section 3.1, this is true particularly when

faults other than classical stuck-at faults are considered, and in

Section 3.1 we describe in some detail testing for shorts between lines

as well as errors in "programming", i.e., missing and extra devices in

the various arrays.

The analysis of a more complex logic array, the associative logic

matrix (ALM), reveals that shorts in this array represent a particularly

troublesome failure because it can result in sequential behavior. As we

show in Section 3.2, while ordinary, two-level PLA's can be thoroughly

tested by verifying C0 and perhaps also verifying CALL' one cannot have

the same high level of confidence when these tests are applied to an

ALM. Our study shows that testability is substantially increased by

the addition of an extra output and this is not surprising, since one

can expect logic arrays to be particularly well-suited for making test-

ing manageable by the incorporation of extra logic. But if shorts can

be expected in ALM's, there can result feedback, hence sequential

behavior, hence operation for which static tests, such as verification

of Walsh coefficients, cannot serve as a sure means for fault detection.

40

In the third part of this section, we describe our analysis of the

effects of faults on a third type of logic array, called Storage/Logic

Array (SLA). Here we deal with a sequential circuit, and so testing by

verification of Walsh coefficients is not applicable. We have again

considered shorts and "programming" errors, as well as stuck-at faults.

We have found that as originally proposed, SLA's could have faults that

effectively increase the number of states in the array. This makes

testing particularly difficult, and we show a design change that would

eliminate the possibility of an increase in the number of states. It

is then readily possible to test SLA's through the use of distinguishing

sequences and verification of transitions, provided the nominal machine

is strongly connected and has a single distinguishing sequence. We

consider means for assuring that these conditions hold and suggest a

simple design modification toward this end.

Readers who have not had the opportunity to study logic arrays

will probably find it helpful to refer to the references listed

at the end of this section and appropriately keyed in

with the text in the following material.

41

3.1 Testing Simple PLA's

A simplified schematic of the basic PLA array is given in Fig. 3.1

We show n-p-n transistors which, under the positive-logic convention

(parameter representing logical value is larger ftr logical 1 than for

logical 0) and with the parallel, grounded emitter configuration shown

mechanize the NOR function. Thus our configuration realizes the NOR-

NOR-INVERT or NOR-OR logic form. Since NOR is the product of the

inverted inputs (e.g., A + B = AB), it follows that the array shown in

Fig. 3.1 realizes functions in the form of a sum of products, where the

products consist of the complements of the connected inputs. In parti-

cular, Fig. 3.1 shows the following functions

f = x1x3 + x2x 4

f = x + ix x
2 2 4 12 3

f =xx + Xx x
3 1 3 2x3x4

The horizontal lines at the output of the first level of gating, which

mechanize the individual products, are frequently called the word lines

and we shall use that term here. The inputs x. and x. are sometimes
i 3

called the decoder outputs because in some PLA applications these inputs

are not single literals, but products of more than one variable (typically

two). This has been shown to be advantageous in some applications and

will be discussed later.

We show below that the basic PLA can be tested by checking the value

of C0 at each output. This method of testing allows us to detect not

only the commonly assumed single stuck-at faults, but also a variety of

multiple faults, errors in programming, and even shorts.

42

Si

Fig 3.1 Rfsj l

2 21 X3 x 4 X

fc

n n

rcc

rig. 3.2 Typical Pair of Word Lines

43

3.11 Crosspoint Defects

If in the AND array there is a missing device and the missing device

should provide a connection to input line xi , then the logical product

mechanized on the word line to which the transistor should have been

connected will have the variable x missing. In other words, the product1
P = x'x.---x will become P' = x.---x . We say that this fault causes

1J s J s
a growth because P' covers a larger subcube (implicant) than P, and so

the function to which the word line is connected will have its true body

enlarged (providing the connection to x* was not redundant). It is easy1

to see that when more than one device is missing in the AND array, there

results a growth in one or more of the functions realized in the array.

In particular, if a word line has no connection in the AND array, then

all functions to which that word line is connected in the OR array are

set to the logical constant 1.

It follows that checking C0 will detect any combination of missing

devices in the AND array.

If there is a device missing in the OR array and that device should

connect row r to function k, f., then the product realized on row r is

no longer an implicant of fk* We say that the missing device causes a

drop because the true body of fk has been diminished by the dropping of

a product in the sum (unless the missing product was redundant). More

than one missing device in the OR array will cause various kinds of

drops, and any multiplicity of these will always be detected by

checking CO.

Missing devices in both the AND array and the OR array, however,

are not necessarily detected by checking C0 . Consider, for example, the

realization of the majority function M = AB + AC + BC, with word lines

L1 through L3 realizing the products AB, AC, and BC, respectively. If

there is a device missing between input line A and L as well as devices

missing where connections to lines L2 and L3 should be made, the faulty

function realized is M' = B. Because M' has four ones as does M,

checking C0 will fail to reveal the assumed multiple fault pattern.

44

| , , -J~U

An extra device in the AND array connected to input x* will resultJ
in the product realized on the corresponding word line having x' added.

J
We will call this a shrinkage, because the augmented product will cover

a smaller subcube (implicant), and so the function to which the word

line with the extra device is connected will have its true body

diminished. Unless there is redundancy, the effect of the extra device

will be detected by checking C0. Similarly, multiple extra devices in

the AND array will also be detected. For the special case where the

extra device connects to x* and the word line also has a connection to
J

xt, the result is a drop of the nominal product, and CO will detect

this case as well.

One or more extra devices in the OR array add extra products to

the function(s) realized. These faults are detected by checking C0.

No general statement can be made about the effectiveness of check-

ing C0 in the presence of extra devices in both the AND array and the

OR array.

In summary, we have shown that checking C detects all single

crosspoint defects as well as a variety of multiple defects, but not all

possible combinations.

3.12 Stuck Lines

An input line stuck in 1 causes all word lines connected to that

input line to be set to logical zero. This causes one or more drops

and is detected by checking C An input line x!z stuck in 0 causes every

product with nominal x* to become independent of x* (P = x*x. x
I 1 1)

becomes P' = xj . Hence this fault causes one or more growths and

these are detected by checking C0.

It is easy to see that output lines stuck are detected by checking
CO •
C0'

A word line stuck in 1(0) is the extreme case of a growth (drop)

i.e., the corresponding product has grown to the logical constant 1(0).

45

3.13 Shorts

Consider Fig. 3.2 and let there be a short between word lines L.1
and L.. This short has an effect only when the inputs are such that theJ

nominal product on L. is true (false) and that on L. is false (true).1 J
In the first case, L. is nominally high (low) while L. is nominally low

1 3
(high). The short, however, makes both lines low in both cases, so

that the word lines act as though there were devices in all places where

there are input-line connections to L. or L.. In other words, the1 9

behavior due to the short is equivalent to extra devices in the AND

array. As was pointed out above, any combination of extra devices in

the AND array is detected by checking CO, and thus shorted word lines

in any combination are detected.

Next, we consider those lines that feed the inputs to the inverters;

we will call these lines "function lines". Since shorts between lines

cause the lower line to dominate, both shorted lines will carry logical

0 when either has a nominal 0. In the case of shorted function lines,

this is equivalent to both lines having devices in all the places of

the OR array where either has a device. As was shown before, extra

devices in the OR array are detected by checking CO, and therefore so

are shorts between function lines.

A short between a word line L. and a function line that nominally1

is not connected to L. will result in lowering the function line when1

one or more of the transistors connected to L. conducts. Since the1

function realized on Li is a product Pi (of the complements of the

variables connected to transistors on that word line), the word line is

low whenever one or more of the connected variables is true, and so the

output f. in the presence of the short becomes f' = f. + P.. Thus the3 3 3 1

true body of the faulty output is enlarged, and verifying C0 for output
f. does check for the assumed type of short.
J

To illustrate, suppose there is a short in the OR array of Fig. 3.1

between function line 2 and the topmost word line. Then f2 becomes one

whenever x is high or x is high. Thus we get the faulty function
fI - I - - 3

f2 = x24 + XlX 2 X3 + X1 + x3 = x 2 x4 + X + x3 which has 13 ones, where-

as the fault-free output f, has only six ones.

46

In the case where the short involves a function line that is

connected to the word line L. in the fault-free circuit, the effect1

is that of a short between base and collector of the transistor that

makes the connection. This causes the function line to become stuck

in 0, i.e., the output will be stuck in 1. This is detected by

checking C0.

When an input line connected to xis shorted to word line i
then L. is low whenever x is low or one or more of the other inputs

1 1 -

x through x* to L. is low. Thus instead of realizing the product
3 k I

Pi x ... x*, the word line realizes iP' = e P., which is called a
1L I k 1 1 1

shrinkage, if the fault-free circuit has no connection to xi,; if it

does have a connection to x , then there is a short between base and

collector of the connecting transistor. This makes Li stuck in 0,

i.e., it causes a drop. Checking C0 on the corresponding output will

detect the fault in both cases.

Since shorts between lines cause the lower line to dominate, both

of the shorted lines will be low when either is nominally low. If both

47

of the shorted lines, x* and xk, are connected to word line Lm, then the

faulty product on L would be P' = (Wi + x) * x* ... x* instead of -he
II Lm m 1 p q

nominal product P x x* ... x*. If one of the lines, x* (xe),
m 1 3 p q 0 - 1 3

is connected to word line L then Pn P + P x (xf), where the
0 n n n n 3 1

nominal product is P = P . x*(x*). In either case, the true body of
n n 1 3

the product is enlarged, and so is that of the corresponding output f,.

It is apparent that checking C0 for the output fi always detects shorts

between input lines.

Similarly to before, when an input line connected to x! and a func-

tion line are shorted, then the function line will mechanize f! = f. x

(f' = f. + Xf), because the lower line always dominates the higher one.

(Whenever x* is low, the function line will be low; the function line1

is still low regardless of the x* value whenever the nominal function
1

line is low). The true body of output j is thus enlarged. This short
can also be detected on some other output. If the input line x* is

1
connected to word line Lk, then the product realized on word line Lk in

0 k
the presence of the short will become P = Pk + Pk f, where the

0it x*. This growth in P can be detected onnominal product is kany output that is connected to Lk. Since in both cases the true body

of the output is enlarged, it is easy to see that the shorts assumed

here are also detected by checking C0.

3.14 More General Decoder Form and Application of C0

Sometimes it is advantageous to use more than one literal (typically

two) as the inputs to the PLA's. For simplicity, consider Fig. 3.3,

where two literals are used as the inputs to the AND array and n-p-n

transistors are used in the NOR-OR logic form in the PLA. From Fig. 3.3,

where the decoders are of the form shown in Fig. 3.4, we have

P1 = Product mechanized on L1 = (x 1 +X2) (Xl+X 2) (x3+ 4) (x 5 +X6)

P2 = Product mechanized on L = (x +X2)(x 3 +xd)(xS+x6) (X+X 6)

P3 = Product mechanized on L3 = (x+X 2)(x 1 +x2)(x 3 +x4). (x 3 +x4)(x 5 +x 6)

P4 = Product mechanized on L4 = (x 1 +X2) (x 1 +x2)(x 3 +x4)(x 5 +x6)

48

S.

1 ~2 x X4 X6 2 3

Two)-Bit Decoder Two-Bit Decoder 'NO-Bit Decoder

Vcc

cc

L3
L

00

Fig. 3.4L wt Two-Bit Decoders

49

f =P + P
1 1 3

f2 = 2 + P4

f3 1 I + P2

In general, the product P realized on the word line L ism m

P (x. + x')(x* + x*) "'" Cxm + xn), where i $ j, k # £, and m n

3.141 Single or Multiple Missing Devices'

If the missing device is in the AND array and the missing device

should provide a connection to the input line x*x , then the product

P = (x + xf)(x + x*)*..(x* + xn) will become P'= (x + x*) ".x m + Xn),

so that this fault causes a growth. Similarly, more than one device

missing in the AND array results in a growth in one or more of the

functions realized in the array.

If the missing device is in the OR array and the device should

connect row r to function f, then the function f = P + P. + "'" + P.
r 1 3 i

will become f' = P. + "'" + P. so that this fault causes a drop. It

is evident that more than one device missing in the OR array results

in various kinds of drops. In all cases C0 verification can serve as

a test.

3.142 Single or Multiple Extra Devices

An extra device in the AND array connected to input x'x* will
13

result in the product realized on the corresponding word line having

(x. + x'f) added, which causes a shrinkage. (The nominal product

P (x* + x*)...(x* + x*) will become P' = (X' + x) (x* + x*)'-'(x* + x*
Z m p q 1 9.Z m p q

due to the fault). Similarly, multiple extra devices in the AND array

result in a shrinkage in one or more of the functions and this is

detected by checking C0 in the array.

If an extra device in the OR array connects row r to function f,

then the function f P. + + P. will become f' = f + Pr' so that

50

the true body is enlarged by the fault. Multiple extra devices in the

OR array enlarge the true body of one or more of the corresponding

outputs. Clearly these faults are all detected by checking CO.

3.143 Stuck Lines in the PLA

As explained in Section 3.12, most of the stuck lines are equiva-

lent to single (multiple) missing devices or single (multiple) extra

devices, and it is not difficult to see that stuck lines not equivalent

to missing or extra devices are also detected by checking C. 1
3.144 Shorts in the PLA

In all cases of shorted lines, the same arguments as given under

shorts in Section 3.13 are applicable here, except that the input

literals in the products are not x1 but (xt + x!) for i 0 j. Therefore,

we can say that the effectiveness of testing by verifying C0 is not

reduced when a two-bit decoder is used.

3.145 Stuck Lines in the Decoders

Refer to Fig. 3.4. Assuming that all pins are fault-free, input

lines to the AND gates in the decoder stuck in 0 are equivalent to

output lines from the AND gates stuck in 0, which are equivalent to

input lines to the AND array of the PLA stuck in 0.

If the fan-out line x1! to the AND gate (i.e.,(- 1 orQ- 2 in
I

Fig. 3.4) is stuck in 1, then the output from the corresponding AND

gate becomes xt, while nominally it is x*tx, so that the word line LS, so tt m
connected to the output from the decoder realizes P' X*x .

(x* + x*) as its product, whereas its nominal product is P = (x*+ kf)
p q m i1

(x* + x*)...(x* + x*). If the fan-out point x to the AND gate
Z m p q I

(i.e.,Qin Fig. 3.4) is stuck in 1, then the two outputs from the AND

gates become xt and xi, where the nominal outputs are xtxt and xtx*,
j j I 1)

respectively. This causes the word line L to realize P' = i x
m m j

(x + x*)... (x* + x*) = 0, if both outputs from the decoder are con-
91 m p q

nected to the word line L m . Otherwise (i.e., only one output connected),

51

I *.~-~- ,.

the faulty product becomes P' = x(x* + x*)" (x* + x*) or P' =
m j 9, m p q m

X (X* + x*)...'X + x*). Since in either case the fault causes a drop,

this is detected by checking CO.

3.15 Testing by Verifying CALL

As shown in a previous Chapter 2, checking CALL of the output f

completely tests for single or multiple pin faults. These are faults

in which, if input xi is stuck-in-s, input xi is stuck in s. For

simplicity, we consider here only the PLA where all inputs to the AND

array are provided by one-bit decoders and limit our discussion to

faults other than pin faults, since these are surely detected by CALL

testing. Note that in all of the previous sections of this chapter we

never considered pin faults. These are not, in general, detected by

checking C0. But as will De seen below, verifying CALL is a weak test

for PLA's other than for detecting pin faults.

3.151 Stuck Lines

Single or multiple input lines x* to the AND array stuck in 1 (0)1

are detected by checking CALL of the output f, if and only if all word
lines feeding the output fi in the OR array are not connected to an

input x'. Single or multiple output lines f. in the OR array stuck in
1 1

1 (0) are always detected by checking CALL, while single or multiple

word lines stuck in 1 (0) are not detected by checking CALL of the

output fi, unless the stuck lines are the only ones feeding the

output f..J

3.152 Missing or Extra Devices

As shown in Section 3.11, some cases of missing or extra devices

are equivalent to stuck lines. Some of these faults can be detected

by checking CALL' but not all.

3.153 Shorts

Only a few of the possible shorts can be detected by checking CALL.

52

3.2 Testing the Associative Logic Matrix

Greer's Associative Logic Matrix [3.9) makes possible the effi-

cient realization of multiple output, multiple level, combinational

and sequential networks by means of the regular interconnection

structure of read-only memory and programmable logic arrays. For the

implementation of complex multiple-output Boolean functions, which

frequently can be expressed efficiently in more than two levels of

logic, Associative Logic Matrices (ALM's) may well be advantageous

over Programmable Logic Arrays (PLA's), which are typically restricted

to two-level logic.

The ability to implement networks involving more than two levels

of logic is achieved in the ALM through the use of "internal function

logic". This logic involves additional bit lines which serve the dual

role of forming logical sums (or products) and providing the resulting

signals as inputs in the formation of subsequent functions. For sim-

plicity, we restrict the realization of associative logic to four-

level combinational circuits. All connections in the array are "wired-

NOR"ed by means of n-p-n transistors. in Fig. 3.5, the internal

function g is g = x1) + x3, one output is fl = x4 g + x1 ' + xl x2x4, and

another output is f2 = x4g + x2 g.

The structure of the ALM differs from that of the PLA in the addi-

tion of the G-array, which realizes the internal functions. Hence the

ALM consists of the AND array, the OR array, and the G-array, as shown

in Fig. 3.5. The rightmost bit line of the G-array will be called the

"collector line of the G-array" and the other two lines, which are used

as inputs in the formation of the output functions, will be called the

"output line g of the G-array" and the "output line g of the G-array",

respectively, as shown in Fig. 3.5.

To ease fault-detection in the ALM's, we will add extra logic. It

consists of one extr:a output, fel which is fed by all word lines con-

nected to the output line g of the G-array. Thus f is of the form~e
fe = gx''x + "' + gx*.. .x*. (In Fig. 3.5, the extra output is

f = gx4).

53

1-I f 2 f

1 1 2 2 .- R A

cc

3 3

L4 cc

L 4

~ 3. A~lof H. 3. lc~i~cc

L5

6S

To avoid duplicating previous explanations in Section 3.1, we

list those faults that have the same effect in ALM's as in PLA's and

omit further discussion of these:

1. Single or multiple missing (extra) devices in the AND array,

where the corresponding word lines do not feed the internal

function (i.e., the corresponding word lines are not con-

nected to the collector line of the G-array).

2. Single or multiple missing (extra) devices in the OR array.

3. Stuck lines not in the G-array.

4. Shorts between word lines, unless one or both of the shorted

lines feed the internal function.

5. Shorts between input lines in the AND array that have no path

to the collector line of the G-array.

6. Shorts between output lines in the Ok array.

7. Shorts between a word line and an output line in the OR array.

8. Shorts between a word line and an input line in the AND array.

9. Shorts between an input line in the AND array and an output

line in the OR array.

3.21 Effect of Other Faults in the ALM's

3.211 Single or Multiple Missing Devices

If a missing device in the AND array should provide a connection to

the input line x. and the word line Lk to which the device should have
1-

been connected is one of the word lines feeding the internal function g,

then the product realized on Lk will become P' = x*...x* instead ofkk m n
P = P ' k, which -we have called a growth. This fault will enlarge
k I k

the true body of the internal function g and also that of the extra out-

put fe Checking C0 on fe will detect the fault. It is easy to see

that multiple missing devices in the AND array will be detected by

checking C0 on f if at least one of the corresponding word lines feedse
the internal function g.

55

_ _-! .2. , . '

If a missing device in the G-array should provide a connection to

the output line g*, then the product realized on its corresponding word

line L will become P' = x.X* instead of P = g* " P'', and hencem m £ m m m
there is a growth. Since this will enlarge the true body of the output

f fed by the word line Lm, checking C0 on f will detect it.

A missing device in the G-array which should provide a connection

to the collector line drops the product on its corresponding word line,

and so the true body of the extra output f is reduced, which will be
,e

detected by checking C0 on f e Moreover, either multiple missing devices

in the AND array and the output line g* of the G-array or missing devices

in the OR array and the collector line of the G-array will be surely

detected by checking C0. But multiple missing devices in both the out-

put line g* and the collector line of the G-array are not necessarily

detected by checking C0.

3.212 Single or Multiple Extra Devices

If an extra device in the AND array connects the word line Lk to

the input x'l and the word line Lk does feed the internal function g,

then the product on Lk will become Pk P which we have called akk I ks
shrinkage. This will reduce the true body of the internal function g
and also that of the extra output fe" Checking C0 of fe will detect

this fault. Multiple extra devices in the AND array will be surely

detected by checking C0 of the extra output fe' if at least one of the

corresponding word lines feeds the internal function g.

One or more extra devices in the output line g* of the G-array,

except for special case A discussed below, will be detected by checking

C of the output fk fed by the corresponding word line, because the

fault causes a shrinkage and reduces the true body of the output fk"

It is not difficult to see that multiple extra devices in both the AND

array and the output line g* will be detected by checking C0.

One or more extra devices in the collector line of the G-array, except

for case B treated below, cause one or more products realized on the

corresponding word lines to become additional implicants of the internal

56

Ion 4F

$

function g, and so the true body of the extra output fe is enlarged,

which will be surely detected by checking C0 of fe" Multiple extra

devices in both the OR array and the collector line of the G-array

will also be detected by checking CO.

Case A

If one or more extra devices are connected to the output line g*

of the G-array and at least one of the corresponding word lines

nominally feeds the internal function g, then this fault will cause

feedback. Consider Fig. 3.5 and Fig. 3.6, which is a conventional

representation of Fig. 3.5. If an extra device connects the output

line g to the word line L1, then the extra device will cause feedback,

as shown in Fig. 3.7. (This situation is illustrated by the top circle

in Fig. 3.5). Suppose x1 , x2, and x3 are, respectively, 1, 1, and 0,

so that nominally L = 1, L = 0 and g = 1. With the fault, however,

if g were 1, the three inversions around the closed loop would comple-

ment g, so the value of g could not remain 1 and in fact the value of

g would oscillate. This is the kind of fault that a static type of

test just cannot detect; only waveform observation will be sure to

result in detection.

If an extra device connects the output line g to a word line L2 ,

then it will cause feedback as shown in Fig. 3.8. (This situation is

illustrated by the circle on Line L2 of Fig. 3.5.) This feedback

over an even number of inversions can be detected by a sequence of two

tests. The first makes both L1 and L2 low, so that g = 1. This is a

stable condition in the presence of the feedback. The second test

makes L2 nominally high while keeping L1 low, so that nominally g = 0.

If feedback is present, however, the second test will leave g un-

changed, i.e., it remains 1. While the assumed fault is detectable,

simply checking C0 will not always work.

Case B

If one or more extra devices connect word lines to the collector

line of the G-array and at least one of the corresponding word lines

is nominally connected to the output line g*, then this will cause

57

St

L1 g

3 D g

Fig. 3.7 Feedback from g Due to Extra Device

Fig. 3.8 Feedback from g Due to Extra Device

58

x Ll S

feedback. Refer to Figs. 3.5 and 3.6. If an extra device connects the

word line L3 to the collector line of the G-array, then the extra device

will cause feedback as shown in Fig. 3.9. (This situation is illustrated

by the circle on the third line of Fig. 3.5.) As before, this feedback

can be detected by a sequence of two tests. The first makes both g

and x4 low, so that L3 = 1, which is a stable condition in the presence

of the feedback. The second test makes g nominally high while keeping

x4 low, so that nominally L3 = 0. If feedback is present, then the

second test will leave L3 unchanged, i.e., it remains 1. However,

simply checking C0 will not necessarily detect this fault.

If an extra device connects the word line L4 to the collector line

of the G-array, then the extra device will cause feedback as shown in

Fig. 3.10. (This is illustrated by the circle on the fourth line of

Fig. 3.5.) As before, when an input combination which makes all of

Li, L2, and x1 low is given, the value of L4 will oscillate due to the

feedback. A static type of test cannot detect this fault; only wave-

form observation can.

3.213 Stuck Lines in the G-array

Since an output line g* stuck in the G-array is equivalent to one

or more missing devices or one or more extra devices in the G-array,

this will be easily detected by checking CO.

If the collector line of the G-array is stuck at 1(0), then the

fault will be equivalent to both the output line g stuck at 0(l) and

the output line g stuck at 1 (0). The output line g stuck at 1(0)

reduces (enlarges) the true body of the extra output fe' so that

checking C0 of fe will detect the collector line stuck. If a word

line Lk is stuck and Lk is one of the word lines feeding the internal

function g, then the fault will surely enlarge (reduce) the true body

of the internal function g and also that of the extra output fe

This fault will be detected by checking C0 of f e

59

" - -A _ _ ". .'r
" ' -

'

I

xl

x2 L,

Fig. 3.9 Feedback Due to Extra Device on
Collector Line

Xl1 L1 9

Fig. 3.10 Feedback that Can Cause Oscillation

60

3.214 Shorts Between Word Lines

If both of the shorted word lines feed the internal function, then

the short between lines is equivalent to extra devices in both word

lines. Extra devices in both lines will reduce the true body of the

internal function g and also that of the extra output fe' so that

checking C of f will surely detect the fault.0 e

Similarly, if one of the shorted lines feeds the internal function

g and the other, Lk, is not connected to the output line g* of the

G-array, then both the true body of the internal function and that of

the output fed by the word line Lk will be reduced, because the short

is equivalent to extra devices in both lines. This will also be

detected by checking C0.

However, if one of the lines feeds the internal function g and

the other is connected to the output line g (g) of the G-array, then

the fault will (not) always be detected by checking Co. Refer to

Fig. 3.5 and Fig. 3.6. If the word line L1 is shorted to the word

line L4, which is connected to the output line g of the G-array,

then the circuit will be changed to that shown in Fig. 3.11, where

the signals on L1 and L4 will oscillate. This is not detected by a

static type of test. If the word line LI is shorted to the word line

L3 connected to the output line g of the G-array, then this will be

detected by checking C0 on the extra output f e Refer to Fig. 3.12.

Once L1 becomes low both L1 and L3 will be stuck at 0 due to the

short, so that the true body of f will be reduced.e

3.215 Shorts Between Input Lines in the AND Array

As explained in the discussion of the PLA, shorts between input

lines enlarge the true body of the products realized on all word

lines connected to those input lines. If one or more word lines

connected to those input lines feed the internal function g, then

checking C0 on the extra output fe will detect this fault, because

the fault will enlarge the true body of the internal function g as

well as the extra output fe"

61

- - ' - ,- . ,. " 1 [... . I
"

illi i

X2I

x 3 2

Fig. 3.11 Feedback Due to Short I

shor

x3

Fig. 3.12 Feedback Due to Short I

62

3.216 Shorts Between a Word Line and an Input Line in the AND Array

If a word line Lk is not connected to the input line x in the
k1

fault-free circuit and L k is one of the word lines feeding the internal
function g, then the product realized on Lk will become Pk = P + x

k Pk i

due to the short, because the short between lines makes the lower

value dominate. This enlarges the true body of the internal function

g, and also that of the extra output f, which i readily detected by

checking C0 of f . Otherwise (e.g., Lk is nominally connected to xe 1

and Lk is one of the word lines feeding the internal function g),

Lk will become stuck at 0 due to the short, which connects base and

collector of the transistor nominally driven by x . This will be

also detected by checking C0 of fe"

3.217 Shorts Between a Word Line and the Collector Line of the G-array

If the shorted word line Lk is not connected to the output line

g* of the G-array and Lk does not feed the internal function g in the

fault-free circuit, the-n the short between Lk and the collector line

will result in the faulty internal function g' = Pk + g, so that the

true body of the extra output f will be enlarged. Checking C0 of fee
will detect the fault. If Lk feeds the internal function g in the

fault-free circuit, then there is a base-to-collector short and the

short will result in the collector line stuck at 0. As discussed in

3.213, this is detected by checking C0 of f .

When the word line Lk is nominally connected to the output line g

of the G-array and Lk is shorted to the collector line of the G-arra\,

then checking C0 on the extra output fe will detect this fault.

Consider Figs. 3.5 and 3.6. If the word line L4 and the collector

line of the G-array are shorted, then the circuit will be changed to

that shown in Fig. 3.13. In Fig. 3.13, since the circuit locks up with

both g and L4 stuck at 0 once g becomes low, the short will enlarge

the true bodies of the internal function g and the extra output f .e

Hence, checking C0 of fe will detect the fault.

63

L 9E IIJI r -

X2

X3

xIL

Fig. 3.13 Feedback Due to Short III

X,

x3

Fig. 3.14 Feedback Due to Short IV

64

However, if the word line Lk is nominally connected to the output

line g of the G-array and it is shorted to the collector line of the

G-array, then simply checking C0 will not detect the fault. Consider

Figs. 3.5 and 3.6. If the word line L3 and the collector line of the

G-array are shorted, then the circuit will be changed to that shown

in Fig. 3.14. The short will make the values of g and L3 oscillate.

3.218 Shorts Between a Word Line and an Output Line g* of the G-array

If the word line Lk is not connected to the output line g* and

Lk does not feed the internal function g in the fault-free circuit,

then the short between Lk and the output line g* of the G-array will

SP k g*, which will reduce the true body of the output

f. fed by the word line Lk. Checking C0 on f. will surely detect the1 0 1
fault. But if Lk is connected to the output line g* in the fault-free

circuit, then Lk will become stuck at 0 due to the fault, so that the

true body of the output fi fed by Lk will be reduced. The fault can
1

be detected by checking C 0 of f.. i

When the word line Lk does feed the internal function g in the

fault-free circuit, the short between Lk and the output line g of the

G-array will be always detected by checking C0. Consider Figs. 3.5

and Fig. 3.6. If the word line L1 and the output line g of the G-array

are shorted, then the circuit will be changed to that shown in Fig. 3.15.

As before, once L1 becomes low, both L1 and g will be stuck at 0. This

will reduce the true body of the internal function g, so that checking

C0 of f will detect the fault.

However, if L does feed the internal function g in the fault-
k

free circuit, the short berween Lk and the output line g of the G-array

will not be detected by simply checking C0. Consider Fig. 3.5 and

Fig. 3.6. If the word line L1 and the output line g of the G-array

are shorted, then the circuit will be changed to that shown in Fig. 3.16.

Since the values of LI and g oscillate due to the short, checking C0
will no longer detect the fault.

65

x2

L 2

x3

Fig. 3.15 Feedback Due to Short V

X2

LX-3

g

Fig. 3.16 Feedback Due to Short VI

66

J

. . ": _"i";
' t"

3.22 Discussion

While the ALM, because of the addition of the G-array, is not

limited to the realization of two-level combinational logic, faults in

the G-array are not easily detected. In particular, some faults cause

oscillation and cannot be detected by a static type of test, but only

by waveform observation. Thus we conclude that testing of PLA's is

easier than testing of ALM's.

3.3 Fault-Detection in Programmable Storage/Logic Arrays

Patil and Welch's programmable Storage/Logic Array (SLA) [3.10] is

a form of PLA which contains flip-flops distributed throughout the

array. Because in some computer designs purely combinational PLA's

are difficult to use extensively due to pin limitations, some PLA's

with flip-flops providing internal feedback from the outputs back to

the inputs, as shown in Fig. 3.17, have been proposed [3.1 1, [3.2].

SLA's differ from previously described PLA's in that the AND and OR

arrays are folded together so that input lines and output lines are

alternated within a single array (see Fig. 3.18). As described in

[3.10], "This has two important effects: (1) substantially more

flip-flops can be added without the need for excess input-output

routing space, and (2) rows of the array... can be subdivided into

multiple independent segments which can represent independent varia-

bles over smaller portions of the array." Furthermore, the columns

can also be subdivided into segments carrying independent variables

with localized access by adding more flip-flops at the intervals

along the columns.

67

Inputs Outputs

Feedback

I I E l

P P

*i

AND ARRAY OR ARRAY

Fig. 3.17 PLA with Feedback

I J outputl Input

Storage Storage Storage
Cell Cell Cell

Row

OR ARRAY AND ARRAY

Fig. 3.18 Storage/Logic Array (SLA)

68

0J

In the SLA circuit shown in Fig. 3.19, row-column connections are

made by transistors with collectors that are selectively connected in

a wired-NOR structure, and "storage cells" consist of cross-coupled

NAND gates with complemented inputs S and 9 (i.e., set-reset flip-

flops are used), so that the two outputs from the NAND gates, Q and Q,

will be 0(1) and 1(0), respectively, if the two inputs S and R are 1(0) and

0(1), respectively. Outputs Q+ and Q+ maintain theprevious values if

and R are both 1, and Q+ and Q+ are unpredictable if S and R are both 0.

(Here and later the superscript + denotes the signal shortly after set

and/or reset values have been established.)

Since the leads in the storage cell contain breakpoints, it can

be used, by opening the breakpoints, for purposes other than the flip-

flop described above. For example, the feedback loop can be broken

so that the outputs of the cell are simple combinational functions of

the inputs.

As one example of SLA logic, we consider here finite-state machines

(FSM's). Refer to Fig. 3.20. If the machine has m states, n bivalued

inputs, and k bivalued outputs, then the total number of cells required

in the SLA will be (k + n + 3 + [log 2 ml) where [p] is the integer equal

to or just larger than p. Of this number, n cells are used for the n

inputs, one for the reset input, and one for the clock-pulse input.

These cells are buffers obtained by breaking the feedback loops. A

total of [log2 m] flip-flop cells are used for the storage of the state

variables, qi, and k flip-flops for the storage of the k outputs, Zi .

One flip-flop, F , is used for determining the proper time duration of

the clock-pulse. This flip-flop will be called the clock-pulse modifier.

There is one row in the array for each possible state transition

and the corresponding outputs. Thus if under some input state S. can1

go to S., under another input Si can go to S and under the third

input S. stays unchanged, then there is a total of two rows involving

state S.. Given m states and p different inputs, there can be at most

mp rows. The transition is made and the associated output is established

69

Storjge
Cel i

I Column
I I Break

C Points

Logic Cell

I Row

1 Row
Break

r Point
x Programmable Break Points

Fig. 3.19 Basic Cells of an SLA

70

- -

A .5

-'.4 a- ,.~

- a

-- a

~Iizc!
____________ ~44,. ~,- C,

4- 4~0

- - - C-

-4-

4.- 44 2~~-~~ - -.

-~ - 4-

44

* 4* 71

U.

when the corresponding row is activated, i.e., made high. There are

also two extra rows. One will reset the machine; the other will set

the machine into the initial state when activated. For proper opera-

tion the machine is first reset and then becomes set by activating

the corresponding row. The row to reset the circuit, which will be

called the reset row, is driven by the negated reset input, and each

input line Si(R to the state flip-flops and output flip-flops is

connected to the reset row, so that the initial values of the state

variables and outputs are inserted when the reset row is activated.

The input line R to the flip-flop F is also connected to the reset

row. When the reset input is high, the reset row is activated, and

because Q = 1, all other rows are made low, so that the initial

conditions and outputs will be stored in the flip-flops in accordance

with their connections to the reset row. (In Fig. 3.20 the initial

state-variable values and outputs will all be zero.) The row to set

the machine, which will be called the set row, is connected to S

and %, of the flip-flop Fa. The set row is also connected to the

reset input and the clock-pulse input. When both reset input and

clock pulse are low (note that Qa(a) became low (high) when the

circuit was first reset), then the set row will be activated. Thus

Qa(Q) is changed to high (low), which will cause the set row to go

back to low, but Q (Q) still remains high (low). This makes the

circuit ready for state transitions, because all rows for state

transitions are connected to Q.

Each row for implementing a state transition is connected to the

state variables q* at the outputs of the state flip-flops and the

input variables Y applied from outside the array. The input lines

SiR i to the state flip-flops and the input lines to the output

flip-flops are connected to the appropriate rows. All rows for

state transitions are connected to the negated clock-pulse input from

the outside, so that a row (no row if the present state is expected

to be unchanged) is activated for a state transition only when the

present state and inputs are appropriate and the clock pulse becomes

high.

72

All rows for state transitions are also connected to the output

line Q from flip-flop f which serves to protect the circuit from

improper clock-pulse length. The input line R to flip-flop F is

also connected to each of these rows. If one of the rows for state

transitions is then activated when the clock pulse is high, the cor-

responding next state variables q~s and outputs Zs will be stored in

the state and output flip-flops, and at the same time Q (Q) from the
a

flip-flop F will become low (high). This value of Qs Qa. which is

not changed unless the clock pulse becomes low, will make all rows for

state transitions low. In other words., more than one state transition

for one clock pulse is not allowed, even if the length of a clock pulse

is excessive. (This scheme achieves the effect of edge triggering.)

As a simple example, consider machine M1 with the flow table shown

in Fig. 3.21. It has four states, one output, one input, and seven

state transitions, so that there will. be seven cells (1 + 1 + 3 + 1og24 =

7). The cell for the input, the one for the reset input, and the one

for the clock-pulse input do not have feedback loops. Nine rows (a

reset row, a set row, and seven rows for state transitions) in the SLA

are shown in Fig. 3.22. When the reset input is made high, row rI is

activated, so that Q CQ) will become low (high), and both state vari-

ables q, and q2 will become low. This represents the initial state A,

and the output Z of the initial state A will be low. If next the reset

input is changed to low and the clock pulse is made low, then row Y,
will be activated, and so Q (Q) will be changed to high (low), but

state variables ql, q2 and the output Z are unchanged. There are two

rows, r3 and r4 , which recognize the initial value of the state variables

(qlq 2 = 0 0), so that if the input Y is made low and the clock pulse goes

high, then row r3 will be activated and so ql, q2, and Z become, respec-

tively, low, high, and low, which represents the next state B(qlq 2 = 01)

and its output (Z = 0). Similarly, when the next clock pulse occurs,

one of the two rows r5 and r6 will be activated for the corresponding

state transition and output.

73

.........................

qlq2 Y = 0 Y= 1 Output

00 A B C 0

01 B C D 0

10 C D C 1

11 D A B 0

Fig. 3.21 Flow Table of M1

74

S.,.2- .o "

I_ N

N - - - - 6T

S. .
Or

4I Nr

4Jt.

06

aD

.2 -- M

4-

4,.)

_ _ _ -75

-io

3.31 Effects of Faults

3.311 Stuck Lines

Refer to Fig. 3.20. Input line S to the flip-flop stuck at 1(0)

will cause the output Q to be reset (or it becomes unpredictable, as

explained later in case C) if the other, R, is nominally low. Other-

wise (i.e., R nominally high), the output Q will be unchanged (set)

due to the fault. Similarly, input line R stuck at 1(0) will cause

the output Q to be set (unpredictable) if S is nominally low. Other-

wise,the fault will cause Q to be unchanged (reset). Thus the fault

may result in the incorrect next state, but it will leave the outputs

correct if the flip-flop F is one of the state flip-flops. The pos-

sible malfunction will be called an incorrect state transition (IST).

If the flip-flop involved is one of the output flip-flops, an incor-

rect output, denoted 10, may occur. Except for case A, if the input

line R to the flip-flop F for the clock-pulse modifier is stuck at

1(0), then the circuit will no longer be synchronous, unless the fault

is redundant, so that the next state and the outputs may be incorrect,

which will also be called an incorrect state transition (IST). The

input line S stuck at 1(0) (except for case C) will make all the

rows connected to Q. low, so that no state transitions (NST) will

occur.

The output line Q (Q*) from a state flip-flop F. (the flip-flop Fa)
j a j O

stuck-at-1 keeps all the rows connected to Q (Q*) from being activated,

so that the corresponding state transitions cannot occur. This will

result in NST. If the output line Q (Q*) is stuck at 0, then a row

connected to Qf(Q*) may be activated for a state transition when it

should not be, so that the next state and the output may be incorrect.

Hence we have an IST. If the output line Q* from the output flip-flop

Fk is stuck at 1(0), then it will clearly cause the 10.

An input line Y stuck-at-1 keeps all the rows connected to Y1
1 1

from being activated, i.e., it results in NST. If Y is stuck at 0,1

76

= Q • _

then one of the rows connected to Y may be activated when it should

not be, so that it will result in an IST.

The reset-input line stuck at 1(0) will keep the circuit from

being set (reset), so that this will result in NST (IST).

The clock-pulse input line stuck-at-l keeps all rows connected to

it from being activated, which results in NST, while the clock-pulse

input line stuck-at-0 causes the circuit to be no longer synchronous,

so that it could result in an IST. It is easy to see that row rk

stuck at I(0) will cause an IST (NST).

Case C

If both inputs S and R to the flip-flop F become low due to the

fault, then the outputs Q+ and from F will be unpredictable.

3.312 Single or Multiple Missing (Extra) Devices at the Crosspoints

If a missing device disconnects the input line S(R) from the row rk,

then the output Q+ from the flip-flop F remains unchanged when it should

be changed. Thus the fault will cause an IST, but the outputs will be

correct, if the flip-flop F is one of the state flip-flops, or an 10 will

result if the flip-flop F is one of the output flip-flops. A missing

device in the output line Q causes the corresponding row to be activated

when it should not be activated, so that the next state and the outputs

may be incorrect; hence there results in an IST. Similarly, multiple

missing devices will cause IST's and/or 10's.

An extra device in the input line S(R), except for case C, may

cause the output Q to be different from the nominal value, so that the

next state may be incorrect, hence the result is an IST. If an extra

device connects the output line Q to row rk, then row rk will not be

activated when it should be, so that the present state and the outputs

will be unchanged, hence the result is NST. Similarly, multiple extra

devices will cause IST's and/or NST's.

A missing device in the input line Y which is nominally connected1

to row r causes the row r to be activated when row r should not be,
k rk bek

77

which results in an IST. If an extra device connects the input line Y1
to row rk' then row rk will not be activated due to the fault when it

should be, so the result is NST. It is not difficult to see that

multiple missing (extra) devices in the input lines will cause IST's

and/or NST's.

Similarly, one or more missing (extra) devices in the reset-input

line and the clock-pulse line will cause IST's and/or NST's.

3.313 Shorts

Here, as before, we assume that a short between lines makes the

lower value dominate. In the SLA, if two rows, rm and rn, are shorted,

then they will always remain low (i.e., be never activated) because at

least one of any pair of rows is always low. The result of the short

is NST.

Except for case C explained previously, consider a short between

the input line S.(R.) and the output line Q from flip-flop F. The

input line Si(R i) becomes high when the clock pulse is low. If the

output line Q is nominally low, then the short between Q and S (R.)

will make S.(R.) low, so that the output Q from t;, flip-flop F. will
1 1 1

become 1(0). This may cause an IST if F. is one of the state flip-
1

flops, an 10 if F. is one of the output flip-flops, and an IST or NST
1

if Fi is the clock-pulse modifier.

A short between Si and Qi (or Ri and Qi) will not affect the

normal values of Qi and Qi. If there is a short between S. and Qi

(or Ri and Qi), then the value of Qi(Qi) may oscillate between 1 and 0,

so that the fault is not easily modelled.

Given the input Y' low, the short between S.(R.) and Y will make11 3
Si(R.) low when Si(R.) should be high. Similarly to the short between

Q! and Si(Ri), this will cause one of the following: an IST, an 10,

or NST, depending on what the flip-flop Fi is used for. It is not

difficult to realize that a short between two columns other than

tIose considered above will cause either an IST, an 10, or NST.

78

Next we consider shorts between a row and a column. When the clock

pulse is low, all rows in the array become low, and so all input lines

Si(R i) become high. The short between row rk and the input line Si(Ri)

will cause Si(Ri) to be low, so that, as explained in the previous case,

this will cause either an IST, an 10, or NST. Consider a short between

row rk and the output line Q from the flip-flop. If rk and Q are

nominally high and low, respectively, then the short will cause rk to

be low. In other words, rk will not be activated, hence NST. If rk

and Q are nominally low and high, respectively, then Q will become

low due to the short, so that it will cause an IST (an 10) if the flip-,

flop Fi is one of the state (output) flip-flops. Similarly, if the

input line Y and the row rk are nominally low (high) and high (low),
1k

respectively, then the short between Y and rk will cause NST (an IST).
1 k

It is easy to see that a short between a row and the reset-input line

(the clock-pulse input line) will cause either NST or an IST.

To summarize, our exhaustive examination has shown that the effect

of faults in the SLA will be one of the following:

1. No State Transition (NST)

2. Incorrect State Transition (IST)

3. Incorrect Output (10)

3.32 Change in the Number of States Due to Faults

In preparation for later discussion of the proper method of fault-

detection in an SLA, we examine first the effect of faults on the number

of states.

3.321 NST's

Since the fault does not allow the present state S. to be changed

to the next state S., the total number of states in the machine may beJ

decreased. In other words, once the machine reaches the state Si, it

cannot reach the state Si., so that the state S. will no longer occurJJ

if S. is the only state through which the machine can reach S..
1 J

79

L S

For example, assume that ql is stuck-at-1 in Fig. 3.22. Then rows

r 3 , r 4 , r 5 , and r6 will never be activated, which will keep state

transitions (A B), (A-*C), (B-C), and (B-D) from occurring. Thus, if

the initial state is A, then the machine will always remain in state A,

so that it ceases being an FSM.

3.322 IO's

In the SLA as described, when a clock pulse occurs, the next state

and the new output are uniquely determined by the present state and the

inputs. If there are faults in one or more of the output flip-flops,

then these faults may cause incorrect outputs, and furthermore, some

of the faults may make the outputs of the next state no longer depend

only on the present state and the inputs. The fault that makes an

output constant reduces the number of states. On the other hand, if a

fault makes the outputs of the next state depend on more than the present

state and the inputs, as will be explained below, then the number of

states will be increased over the nominal number.

Theorem 3.1. In a Moore-machine implemented by means of an SLA,

the number of states will be increased due to some faults if the

machine has at least two distinct states, Si and S., the outputs

of which are different, and one or more of the next states

(successors) of one state, Si, is the same as one or more of the

next states of the other state, S..
J

Proof of Theorem 3.1

For simplicity, assume that only one output flip-flop, F , is used

in the SLA. Either S or R is nominally connected to each row for
z z

implementing a state transition, so that, when the row is activated,
the proper output will be stored at the output line Q " Consider three

z
rows, ri, ri, and rk which implement the state transitions, respectively,

(S +Sk), (S -S), and (Sk Sn) and let the outputs of states S. and S.
i 1 3

be respectively, 0 and 1. If the fault (due to missing devices) dis-

connects the three rows from the input lines S and Rz, then the output
z

80

of state Sk will be the output of the previous state S. when row r. is
k ~1 11

activated, but it will be the output of the previous state S. when row

r is activated. Thus the state Sk will have two different outputs,rj kupus
0 and 1, associated with it. When the row rk is activated, the output

of state Sn will remain unchanged and so it will be the output of the

previous state Sk, which has two different outputs depending on the

state previous to Sk * Since the output of the next state is not

uniquely determined by the present state and the inputs, one or more

extra states have been effectively added. Q.E.D.

For example, consider machine M1, which is strongly connected.

Refer to Figs. 3.21 and 3.22. Since there are two states B and C

satisfying the condition assumed in Theorem 3.1, the number of states

could be increased due to some faults. If the two devices at the cross-

points between r7 and Rz and between r8 and Rz are missing, then the

output of state D will be 1 when row r7 is activated, but it will be 0

when row r6 is activated, so that the output of state A when row r8 is

activated will not be uniquely determined, because tl e outrut of state

A is the output of the previous state D. This is shown in the flow-

table of Fig. 3.23. The state D has two different outputs, so that by

adding one extra state, E, we can complete the flow table of the fai.lty

machine, which is shown in Fig. 3.24. (This is a Mealy-machine

As-a second example, consider machine M which is not stronL2
connected, but satisfies the condition assumed in Theorem 3.1. ,I-

flow table is shown in Fig. 3.25. States A and B have different

outputs and the same successor D. Assuming that the row for the state-

transition (A-B) is represented by rAB, if all devices between S z(RZ)

and rows rAD, rBD, and rDA are missing, then the flow table will be

changed to that shown in Figs. 3.26 through 3.28. The two different

possible output values of state D will cause extra states A, D1 to be

added as shown in Fig. 3.27. The resulting Mealy machine, M2, can be

transformed to its Moore equivalent, MO, as shown in Fig. 3.28.

81

qlq 2 Y 0 Y 1

00 A B.0 C,1I

01 B C,l1 D,0

10 c D,lI C,l

11 D IA 3 Q B,0

L~ the output of the state D

Fig. 3.23 Faulty Version of M

Y =0 Y= 1

A B,0 C,1

B C.l D,0

C E,l C,l

D A,0 B,0

E A,l B,0

Fig. 3.24 Result of Fault in M1

82

Y= 0 Y =1 Output
- -- -

A B D D

B D C 1

C C C 0

D D A 0

Fig. 3.2S Machine M2

,Y=O Y=l

A B, 1 D, Q4D--- the output of
state A

B D,O. C, 0
the output of

C C, 0 C, 0 state B

D D,O A,O

the output of the previous
entry leading to D

Fig. 3.26 Machine M2 with Faults

83

Y 0 Y I

A Bj D,O

B Di $1 CO

C CO CO

D D,O0 A,O0

D 1 DI ,1 Alt I

A B, 1 D 1
1 1

Fig. 3.27 Resulting Mealy Machine Me

Y = 0 Y = 1 Output

A B D 0

B E C 1

C C C 0

D D A 0

E E F 1

F B E 1

Fig. 3.28 Resulting Moore MachineM0

* 84

3.323 IST's

If there is an IST, the number of states will never be increased

over the nominal number. This is so because once the state, whether

correct or not, and the inputs are given, the output flip-flops will

generate a unique output pattern based on that state and the inputs.

For example, if the input line Y is stuck at 0 in Fig. 3.22,then rows

r3, r5 , r7P and r8 become independent of the Y-value, so that both

rows r3 and. r4 will be activated when only row r4 should be, and

similarly both r5 and r6 rather than only r6 will be activated, both

r 8 and r9 instead of only r9, and row r7 will be activated when it

should not be. The flow table will be changed to that shown in

Fig. 3.29. Note that the number of states is unchanged.

3.33 Modification of the Circuits

As explained in Section 3.322, some faults in the output flip-flops

may cause the number of states to be increased over the nominal number.

This effect makes it difficult to apply conventional testing methods

for sequential circuits [3.11], [3.12] to an SLA because these methods

are successful in circuits ihere faults cannot increase the number of

states. We propose here that SLA circuits be modified so that faults

cannot increase the number of states. It will be shown that this can be

achieved by generating the outputs by means of combinational logic

circuits rather than output flip-flops.

The added combinational logic circuits consist of extra rows and

cells with feedback loops that are all broken. See Fig. 3.31, where

there is one output cell at the right. (The number of output cells

will be r2i if the number of output flip-flops that they replace in

the original SLA is k.) Each extra row is connected to the proper

state variables q* to satisfy the outputs of all the states of the

Moore machine and then each input line to the output cells is connected

to one or more extra rows to generate the outputs of the machine. (See

85

y 0 Y I

A B,0 D,x

B C,l C,x

C D, 0 D,0

D A, 0 A, 0

x Unpredictable output

Fig. 3.29 Machine M with Faults

q q 2 Y 0 Y I Outputs (Z 1 Z2)

00 A B C 00

01 B C A 10

10 C A D 11

11 D D B 01

Fig. 3.30 Machine M 3.

86

4

f

- N
4l 0 0

&. L
N

N

N

'A
4,
a.
4,

Y Y--- '
N

N -- -~
a.

N

N* a.
a.

IA
S

.0 U, -
Ia - a. - - - a.

a. 0
S. -Ia - - a a.

S - a.
4,'a4,U, I.-

a.
a5-

I-.
4, a. -

a.
C

z
0
IL

Sb
a, Sn -
'AL IL
~0
a.'... ~

IL
.~ .v -
(Jo CD
OK -

C

t&1z
I-

(JUlo -

S~, C.

.4,

a.
C

4,a,
S

I I--- I

37

9 -

the example below.) It is easy to see that the structure of the combina-

tional circuits described above is exactly that of the two-level PLA,

where the inputs to the AND array are the state variables q! and the

outputs from the OR array are the outputs from the cells. Since no

fault in the PLA can cause the number of states to be increased (i.e.,

a PLA is not changed to a sequential circuit due to faults as discussed

in Section 3.1), no fault in the modified SLA will cause the number of

states to be increased over the nominal number. Thus conventional test-

ing methods can be applied to the modified SLA.

For example, consider machine M with the flow table shown in

Fig. 3.30. The combinational circuits for the outputs (Z1Z2) in the

modified SLA consist of three extra rows (rel, re2, and re3) and one

cell. The latter has all feedback loops broken, so that the two output

lines from that cell will carry outputs Z1 and Z2 . (Note that two flip-

flop cells are required for two outputs Z and Z2 in the original SLA.)

As shown in Fig. 3.31, the products realized on the extra rows rel, re2,

and re3 are, respectively, Pel = qlq 2
' Pe2 = qlq 2, and Pe3 = qlq 2. The

outputs Z and Z from the cell will be Z P +P andZ=P + P
1 2 1 el +e2 2 = e2 +e3*

3.34 Testing Methods for Sequential Circuits

We will say that a FSM is diagnosible if it has a distinguishing

sequence. Techniques for making FSM's diagnosible will first be briefly

reviewed and then a novel technique, more appropriate for SLA applica-

tion, will be given.

3.341 C. R. Kime's Technique [3.12]

Consider the flow-table of a Mealy machine. We shall say that the

machine M contains the machine M2 if deleting some of M 's columns

creates M2, which has no equivalent states. If M2 is diagnosible, then

M1 will also be diagnosible. If M1 does not contain such a machine,

Kime suggested appending to it a single column which is an irreducible
machine M2 that has a distinguishing sequence. Adding this column by

2

88

* |

means of one extra input symbol will make any machine diagnosible.

As Ref. [3.121 summarizes it "The column Kime adds is a "divide-by-two

column." In other words, state with binary assignment bi, maps to

the state with assignment LI bi (Q j signifies integer part of).

The output for the state Si is the rightmost bit of its state assign-

ment (e.g., for the assignment 01, the output would be I)."

For an example of this procedure, Ref. [3.12] gives the machine M4

shown in Fig. 3.32. The divide-by-two column is added, resulting in

the machine shown in Fig. 3.33.

The effect of the added column is to shift the state assignment

one digit to the right and introduce a zero as the new leftmost digit.

It follows that the added column has a distinguishing sequence of length

k when there are k bits in the state assignment. In the four-state

example, the distinguishing sequence will generate an output sequence

which consists of the state variables q2 and ql of each state.

3.342 R. L. Martin's Technique [3.12]

Martin's technique for making FSM's diagnosible is based on "feed-

back-shift-register (FSR) realization" of the machine. Fig. 3.34 shows

the typical FSR circuit, where the state variable qi of the next state

in the machine is the variable qi-I of the present state. If a machine

is modified for FSR realization, then it has a distinguishing sequence

of length k when there are k bits in the state assignment. As described

in [3.12], "We propose adding a cycle of length 2k column with outputs

(added) so that any sequence of k inputs of this added column generates

an output sequence which is the state assignment of the initial state...

Further, since adding the cycle column to any SM makes it strongly con-

nected, the rather unfortunate constraint of strongly connectedness

usually assumed in diagnosing techniques can be discarded." For example,

consider machine M 4 given previously in 3.341. As shown in Fig. 3.35, a

distinguishing sequence of length 2 exists due to the cycle column under

input 2, and the output sequence will be the state variables q, and q2

of each state.

89

q1 q2 0 1

00 A A/0 C/o

01 B A/0 D/i

10 C B/i A/1

11 D B/I C/o

Fig. 3.32 Machine M4

ql q2 0 1 2

00 A A/0 C/o A/0

01 B A/0 D/I A/I

10 C B/i A/i B/O

11 D B/1 C/0 B/I

Fig. 3.33 Kime's Augmentation of M4

90

ExraFeedback Input

Output

Fig. 3.34 FSR Realization, where 1qkq-l..qAlis the
Binary State Assignment.

qlq 2 0 1 2

00 A A/0 C/o B/0

01 B A/0 D/1 D/0

10 C B/1 A/1 A/1

11 D B/1 C/o C/I

Fig. 3.3S Machine M Modified in Accordance with Martin's Scheme

91

AD-A09% 310 LEH414 104KV BETHLEHEM PA F/e WIi
TESTABILITY AND RELIABILITY OF LSI.U)
JAN 81 A K SUSSKINO F30602-78-C-0292

UNCLASSIFIED RADC-TR-80-384 .2,2000000lff l
Imuuuuuuuuuu
EiEllEE:

3.35 Application of Testing Methods to the FSM in the SLA

Because Kime's technique for making FSM's diagnosible fails to

make the machine strongly connected, it leads to a realization that it

is not necessarily simple to check. Hence we prefer Martin's technique

for achieving testability.

If the Moore machine contained in an SLA is directly modified in

accordance with Martin's scheme, then in most cases it will become a

Mealy machine due to the output requirements in the added column. Thus

the number of states is likely to be increased over the original number,

which is an undesirable result, when the modified machine (Mealy machine)

is converted to the Moore equivalent for SLA-implementation.

An alternative approach for applying Martin's technique would be to

apply conversion twice. First, the original machine is converted to its

Mealy equivalent with a minimum number of states. Then after modifica-

tion in accordance with Martin's scheme the machine is converted to its

Moore equivalent. But still the modified Moore machine may have more

states than the original Moore machine, as is illustrated in the follow-

ing example.

Consider Moore machine M5 with the flow table shown in Fig. 3.36.

When this machine is converted to the Mealy machine shown in Fig. 3.37,

the number of states is not changed. As a next step, we add the extra

column under new input 2. If the modified Mealy machine of Fig; 3.38

is converted back to a Moore machine, then the number of states is

increased by one over that of the original machine M5 . This is shown

in Fig. 3.39.

We suggest here an alternative way of adding a column which is

directly applicable to Moore machines and does not increase the number

of states. Assume a machine in which m states have the output 0 and n

states have the output 1. If the flow table of the machine is arranged

so that states having the output 0 are placed in the first m rows and

the others, having the output 1, are placed in n rows following the

first m rows, we get a flow table like that shown in Fig. 3.40. In the

92

ILS

0 1 output

A B C 0

B C A 0

C D B 1

D A D 0

Fig. 3.36 Machine MI

01

A B/0 C/1

B dlI A/0

C D/0 B/a

D A/0 D/O

Fig. 3.37 Mealy Equivalent of M5

93

00 A B/0 C/1 B/c

01 B C/I A/0 DID

10 C D/0 B/D A/ I

11 D A/0 D/D C/1

Fig. 3.38 Mealy Equivalent Modified

0 1 2 Output

A B c B 0

B C A D 0

C D B E 1

D A D C 0

E B C B 1

Fig. 3.39 Moore Equivalent Converted

Q4

0 1 output

1, 0

* row0

*mrows 5

S

Lm+n1

Fig. 3.40

0 1 2 output

Si S 0
S S 0

2 3

S m I 0

S 1 ~Sm2 1

S S 1m+n1

Fig. 3.41

95

jI

0 1 2 Output

A B C B 0

B C A D 0

D A D C 0

C D B A

Fig. 3.42 Moore Machine M Directly Modified

added column, the successor state to state S. will be Si+l for

i = 1,2,'",m + n - 1, and for present state S+ n , the next state will

be S1. as shown in Fig. 3.41. The modified machine will be diagnosible

because the added column has a distinguishing sequence of length m-l (n-l)

if m(n) is bigger than n(m). The property of strongly connectedness is

assured since all states are in a single cycle. As an example, we

return to machine M5 of Fig. 3.36. By adding the one column shown in

Fig. 3.42, the machine has a distinguishing sequence of length 2, and

the number of states is not changed.

References

[3.1] H. Fleisher and L. I. Mai- I \ 1: . .. ution to array logic,"

IBM J. Res. Devel,, , 8-09, Mar. 1975.

[3.21 I .. .ai., "Hardware implementation of a small system

...K able logic arrays," IBM J. Res. Develop., pp. 110-119,

k~r. 1975.

(3.3] E. B. Eichelberger and E. Lindbloom, "A heuristic test-pattern

generator for programmable logic arrays," IBM J. Res. Develop.,

vol. 24, pp. 15-22, Jan. 1980.

[3.4) C. W. Cha, "A testing strategy for PLA's," in 15th Design Auto.

Conf. Proc., 1978, pp. 326-331.

97

[3.5] D. L. Ostapko and S. J. Hong, "Fault analysis and test go., .

for programmable logic arrays," IEEE Trans. (om,,

pp. 617-627, Sept. 1979.

[3.6] J. E. Smith, "Detectio f1 ,.atmable logic arrays,"

IEEE Trans. C 'm,,; 4h-853, Nov. 1979.

[3i., design of programmable logic arrays,"

,,. omput., vol. C-28, pp. 609-617, Sept. 1979.

I.,A IL. L. Muehldorf and T. W. Williams, "Optimized stuck fault test

pattern generation for PLA macros," in Dig. Semiconductor Test

Symp., Cherry Hill, N.J., Oct. 25-27, 1977, pp. 88-101, IEEE

catalog no. 77ch-12f-7c.

[3.9] D. L. Greer, "An associative logic matrix," IEEE J. Solid-State

Circuits, vol. SC-11, pp. 679-691, Oct. 1976.

[3.10] S. S. Patil and T. A. Welch, "A programmable logic approach for

VSLI," IEEE Trans. Comput., vol. C-28, pp. 594-601, Sept. 1979.

[3.11] C. R. Kime, A Failure Detection Method of Sequential Circuits,

Department of Electrical Engineering, University of Iowa Technical

Report, 66-130 (January 1966).

[3.12] R. L. Martin, Studies in Feedback-Shift-Register Synthesis of

Sequential Machines, Research Monograph No. 50, The M.I.T. Press,

Cambirdge, Mass.

[3.13] F. C. Hennie, Finite-State Models for Logical Machines,

John Wiley & Sons, Inc., New York, 1968.

[3.14] Z. Kohavi, Switching and Finite Automata Theory, Second Edition,

McGraw-Hill Book Co., New York 1970.

98

4.0 A TESTABILITY MEASURE

A testability measure (TM) must satisfy two major requirements:

(1) it must indicate the difficulty encountered in testing and (2)

the computational complexity of evaluating the TM must be signifi-

cantly lower than that of actually finding the tests.

The appropriate response to the first requirement is far from

clear, because the requirement is not. What do we mean by "difficulty

encountered in testing"? Is it the effort required to generate

(specify) tests for all stuck-at faults? for all bridging faults?

Is it required that the size of the test set must not exceed some

limit, so that test duration is modest and the data stored in the

tester is manageable? Do we assume scan-in/scan-out (also called LSSD;

see Ref. 4.1) design, so that we need to test only combinational

circuits and shift registers?

If these questions are hard to answer, our quandary is made even

greater when we weigh the appropriateness of the use of universal net-

work forms for which universal tests of very modest size are known and

can be written down without significant effort (see Ref. 4.2). We

realize that the easily-testable network form of Ref. 4.2 has not

found acceptance. On the other hand, we know that PLA's are finding

wide application. We showed in Chapter 3 that simple PLA's can be very

thoroughly tested by means of checking the Walsh coefficients. But the

difficulty in testing PLA's with n input-signal pins by verifying Walsh

coefficients is independent of the particular function on hand, since

(a) the test set always consists of the set of all binary n-tuples, and

(b) the test preparation consists only of calculating the appropriate

Walsh coefficient of the particular (combinational) logic function on

hand. So we would conclude that all PLA's with an equal number of

input pins are equally testable, as far as Walsh-coefficient verifica-

tion is concerned. To add to our perplexity, one might ask how he

99

f

would compare the testability of PLA's with that of j-level "random"

logic.

When we considered all of these matters, we had to conclude that

it would be unrealistic to expect that one can formulate a testability

measure that is applicable to the entire broad range of issues raised

above. Rather, we restricted ourselves to conventional testing in

which the test equipment generates a specific set of input vectors

(to be either stored in memory or derived by some algorithm, but not

consisting of all 2n n-tuples) and the response is compared to the

nominal (fault-free) case. We were not able to come up with a means

of assessing the size of the test set (i.e., its length) and there-

fore based our testability measure on the degree of difficulty in

finding (specifying) tests for stuck-at faults.

In order to keep the task of computing the TM modest, and so

satisfy the second requirement listed above, we developed approxima-

tions to the computation of the component calculations. We can com-

pare these with precise calculations and thus we have been able to

assess how well our approach does in comparison to the precise formu-

lation. We believe that the "testability" of our TM against a rigorous

measure is a valuable feature of our approach.

A second feature of our approach is that it lends itself to the

"building-block" approach in those cases where the blocks do not

share inputs.

4.1 Formulation of the Testability Measure

Our testability measure is derived from the number of solutions to

the Boolean equation

xd = 1 (4.1)
L dx L

Solutions to (4.1) simultaneously satisfy the pair of Boolean equations

100

= 1 (4.2)

df = ((4.3)

In (4.2), x* denotes the signal on lead L which is to be tested for

"sticking". If the test is for L-stuck-at-l(0), x* xL(xL). In other

words, (4.2) sets the signal on lead L to logic value 0 when the lead

is to be tested for stuck-at-l, and to logic value 1 when the lead is

to be tested for stuck-at-0. The number of solutions to (4.2) is

called the controllability of lead L.

Equation (4.3) sets the Boolean difference (BD) to logic value 1

and its solutions have the following meaning. Recall that given a

function f of x, x2, ... , XL ... , xn one defines (see, e.g., Ref. 4.3)

df
"f _ = f(xlPx2, " O, ') Q)f(XlX2 '" ,l1 '..,xn)

Thus the BD is the exclusive-OR of the function with xL = 0 and the

function with xL = 1. To satisfy (4.3), the two terms on the right

in the defining relation must have opposite logic values, which can

happen only when the value of f with xL = 0 is different from the

value of f with xL = 1. In other words, when (4.3) is satisfied, then

the values of the independent variables x. are such that a change in

the value of the signal on lead L results in a change in the value of

the output. Put still another way, satisfying (4.3) assures that

conditions in the circuit are such that a change in xL is observed at

the output, and so we call the number of solutions to (4.3) the

observability of lead L.

For example, let

f = AB (D AC

be realized by the circuit of Fig. 4.1. Then, since

d f = C() B = BC + EC = 1

101

X

A

B

C

Fig. 4.1 First Example

i ft

102

has two solutions (B = 1, C = 0 and B = 0, C = 1), it follows that the

observability of A is 4 because there are four solutions in the unit

3-cube.

To make our observability measure independent of the number of

variables, we normalize our results by dividing the number of solu-

tions by 2n. Thus for our example the observability of lead A is =
8 2*

To assess the observability of lead X, the top fan-out of input A, we

write

f = XB + AC

from which we get

df= AGO (B+AC)dX

df
There are three input vertices for which = 1: B = 1, C = 0, and

3
A = B = C = 1. Thus the observability of lead X is 8'

The calculation of the BD, while not difficult, is tedious and

if it were to be used for calculating the observability of every lead

in the network, lengthy computations would be required. Moreover,

getting the solutions to (4.3) is half the work of finding tests; the

other half consists of finding solutions to (4.2). But keep in mind

that our observability measure does not require the input conditions

under which a "wiggle" in lead L is observed at the output; our measure

only seeks to determine the number of these conditions, and for that

purpose, we develop approximations, which will be described in

Section 4.4.

Just as we are not willing to go to the process of finding all

the solutions to (4.3) and then counting them, so we are also not

prepared to find all the solutions to (4.2) and then count them.
1 0

Rather, our controllability measure CL(CL), which measures the number

of (primary) input combinations that set xL to I(0), is also based on

approximations and these will be presented and discussed in Section 4.3.

Our controllability measure is also normalized by dividing the number

of solutions to (4.2) by 2n
.

103

• .3

Some elementary examples may help. If the function is an n-input1 1 (eas
AND of independent inputs, i.e., f = xlx2""Xn' then CA = - (because

~A 1l 2 n A 2n
2n0 2n
-
1 1-C.

only one input combination of 2
n sets f to 1) and CA = 2- C

1 0 27A
Note that it must always be true that C1 + CO = 1.

As a second example, consider fB = X x 2 '" x . This is a

function which has as many l's as O's in its truth table, so

1 0 2n -1 1
CB = CB = 2 n T

The parity function has an interesting observability feature.

df
Since j = (x1 G x2 (D ... (D xi- 1 0 xi+l 0 Xn) 0

1

(1 (D x2 xi-, xi+l x n

dfB
and A(GA = 0, it follows that - = 1, no matter what the other

1

input values are. In other words, a change in x. can be observed at
1

the output no matter what. That is reflected in our observability

measure, which takes on the value 2n = 1, which is the largest value

that it could assume. It is gratifying to know that our observability

measure reflects properly the ease with which signal variations are

transmitted through an exclusive-OR box.

4.2 The Basic Strategies

To calculate the observability as well as the controllability we

will not work with Boolean functions, as we did in the example of

Fig. 4.1, but rather with a gate model of the network. This is cer-

tainly desirable, since we know that testability depends not only on

the function realized, but also on the particular way in which it is

mechanized. (The classical illustration of the effect of network

make-up is the parity function. If realized as a tree (pyramid) of

two-input exclusive-OR gates, it can be tested in four steps for all

104

L'A

single faults, no matter what the number of inputs, n, is. If

realized as a two-level NAND/NAND (A=D/OR) network, however, all of

the 2n possible inputs are needed for single-fault detection.)

We will work our way through the network twice. The first time,

we proceed from input to output, in order to calculate the controlla-

bility values of-each lead. To do this, we proceed level by level.

In the first level are all those gates that have only independent

(primary) inputs connected to them. In the second level are all

those gates that have at least one input from gates in level 1 and

possibly primary inputs. Similarly, in the i-th level are all those

gates that have at least one input from gates in level (i-l) and pos-

sibly inputs from gates on lower levels and perhaps primary inputs.

By calculating in increasing order of level, we are able to express

the controllability values of all the leads in terms of the controlla-

bilities of the primary inputs only.

When the network is processed for the second time, we proceed

from output to input, i.e., in decreasing order of the levels. This

will allow us to express the observability of each lead in terms of

the observability of the output and the controllability of the various

leads which, as was pointed out above, has previously been expressed

in terms of the controllabilities of the primary inputs. Hence obser-

vability is expressed in terms of the observability of the output and

the controllability of the inputs.

As we work our way through the network from input to output, we

will set up lead variable lists. These are sets which have as elements

the independent variables. The lead variable list of lead L contains

independent input variable x if the logic function that expresses the

signal on L depends on x!. If the inversion parity on the path between
1the primary input x. and lead L is even (i.e., there is an even number

of inverters on the path), x* x." if the inversion parity is odd,1 1

x = x.. When x. has at least one path to L with even inversion parity
1 1 1

and another with odd inversion parity, then the lead list contains both

x. and x..1 1105

Ii

4.3 Controllability Calculations

4.31 AND Gates

Consider first a two-input AND gate with inputs 1 and 2 that have

associated lead-variable lists L1 and L2, respectively.

A. If L and L2 have no common elements,

1 1 1 (4.4)
AND 1 2 ° (

i.e., the 1-controllability of the output of the AND gate is the product

of the 1-controllabilities of each input. This is certainly a very

reasonable, in fact precise, rule. Because of our normalization, it says

that if inputs 1 and 2 are independent, the probability of a 1 output

is the product of the probability of a one on input 1 and the probability

of a one on input 2. Thus (4.4) corresponds to the joint probability

of two disjoint events.

B. If the lead-variable set of one input is a subset, not neces-

sarily proper, of the other lead-variable set,

1 1 1 2
C AND =min (C1 , C1) (4.5)

When the containment condition holds, it is quite likely that a 1 on one

lead is accompanied by a 1 on the other, but not conversely. But for a

1 output both inputs must be 1. Hence our rule.

C. If the elements in list L1 are the complements of those in L2,

0 0 0 (4.6)CAN D 1 C+C 2

Under the given condition, if one input is 0, the other is likely

to be one, and so the number of situations under which there is at least

one 0 input is approximated by the sum of the number of 0 inputs from

each input. Here, as elsewhere, when sums are formed they are not

allowed to exceed 1. Thus in our calculations 0.6 + 0.7 1 1.3=::>l.

106

lli I11S lll I II

D. If the case on hand does not nearly meet Cases A, B, or C, then

each of the partially applicable formulas is used and the results are

averaged. We emphasize the word "nearly" and are not able to quantify

it at this time. We have worked a number of examples to date where

we used "nearly" to mean about two out of three, and the results of the

controllability calculations have been very good. However, our exper-

ience has not been sufficiently extensive to draw definitive conclusions.

Now consider an AND gate with more than two inputs. Because of

associativity, we can decompose the AND gate into a pyramid (tree) of

AND gates, each with fan-in of two, and then apply repeatedly the three

formulas given above. We arrange the decomposition in such a manner

that as many gates as possible have their inputs such that one of the

above three conditions is fully met. For example, suppose

L = {a,b,c}, L2 = {b,cl, L3 = {a,sic}.123

Then we arrange the decomposition so that leads 1 and 3 are combined

first, using (4.6), and then we combine L1, 3 = fa,a,b,S,c,c} with L2

according to (4.5). As a second example, suppose

L1 = {a,b}, L2 = {a,c-, L3 = {b,c}

Here we cannot form a "pure" pair, and so we combine leads 1 and 2

according to the average of (4.4) and (4.5) to obtain the lead variable

list L1, 2 = {a,b,E), which then gets combined with L . Two of the three

elements in L1, 2 satisfy the condition of (4.6), and so we use it.

It should be clear that where the conditions given above -i

simultaneously met by more than one lead pair, the abo

be extended in the obvious manner. Thus foer t ave

no elements in common, we say immedii,,

3 (4.4A)

and simli, And L3 satisfy the containment relationship

107

1 =mn 111C 4.A
CAND m (C1 ,C21 C (4.5A)

4.32 OR Gates

The rules for calculating the output controllability of two-input

OR gates immediately follow from the rules for AND gates by applying

duality.

A. If L1 and L2 have no common elements,

o 0 (4.7)
COR 1 C2

B. If one lead set contains the other,

0 = 0ai 0
COR = min(C1 , C 2)

C. If the elements in list L1 are)I . o! those in L2,

OR (

Calculatim,, .. Its with greater fan-in are also made by an

apprmr . , on in a pyramid (tree). Again, we try to pair

:hat the conditions are met as nearly as possible.

1.33 Other Gates

We assume that the only other gates involved are inverters (for

which C1 = C0 ND ND0
INV OUT INV IN) , NAND gates (for which C C) and

NO gts fo hih1 0
NOR gates (for which C N COR). Thus (4.4) through (4.9) are a

complete set of rules for calculating the controllability transfer

through the gates.

4.34 Fan-Out Free Networks

In a fan-out free network, (4.4) or (4.4A) is precisely met at

every AND gate, and (4.7) or its extension to larger fan-in is pre-

cisely met at every OR gate. Thus our calculations are precise, no

108

(I

matter how large the network. Tht , • .. at least the easy

case is handled perfectlb 1, ..btity measure.

4.4 Fxamr' . iiity Calculation

ilate our method of calculating controllability values for

difficult case, we analyze the three-level network of Fig. 4.2

that mechanizes A(]B. The lead-variable sets are indicated in the1
figure. Assume the controllabilities of the inputs are each . Then,

according to (4.4),

c 0 0 1 1 1 1 1

g Cd Cf = CA• CB = 2 T

In calculating the controllability of lead a, sets A)and {A,§) are

involved. Because these sets partially satisfy the conditions that

make (4.4) and (4.6) applicable, we take the average of the values

determined by these. The first gives

o CI 1 1 1 3C =C * C x
a c d 2 8(-

and the second

C1 0O 0 1 1 3I
a = c d 2 d +

so the average is

C1 1 3 1 1a (l

Because the circuit is symmetrical, C = C
b a Tocmueteott

controllability, we take the average of the results obtained from

applying (4.5) and (4.6). The former is partially applicable, because

the two inputs to gate 4 have A and B in common in their lead-variable

sets. Equation (4.6) is partially applicable because the complemented

variable in one set appears uncomplemented in the other. According

to (4.5),

C 0 min 1 1 1 11
out aCb a 16

109

-iU

According to (4.6),

C 1 CO + 0 2C0 = 2(l -11 10out2a b 2 a

F 1 101 is
The average is 1 L - -6- 6 = and this compares favorably with

1
the correct value of

4.5 Observability Calculation

To calculate the observability of input lead 1 of an AND (OR) gate

with a fan-in of r, we consider the gate equivalent to a gate with fan-

in of two in which one input is lead 1 and the other the output of a

second AND (OR) gate which has a fan-in of r-l. We then compute the
1-controllability (0-controllability) of the output of the gate with
fan-in of r-1 in accordance with Section 4.3. This is depicted in

Fig. 4.3. Because a NAND (NOR) gate with fan-in of r is equivalent to

an AND (OR) gate with fan-in of r followed by a single inverter and

the observability of the input of an inverter equals that of its output,

our approach to calculating the observability of an input to a NAND

(NOR) gate is identical to that of an AND (OR) gate. This is also

shown in Fig. 4.3.

From the simplifications depicted in Fig. 4.3, it follows that it

is sufficient to describe our method of calculating the observability

for AND (OR) gates with a fan-in of two. For AND gates, we calculate

according to

OBSI (C1)(OBS (4.10)input 1 input 2) output

and for OR gates according to

OBS (C)(OBS (4.11)
input 1 input 2 output

These rules are easy to justify. The "wiggle" on an input of an AND (OR)

gate shows up at the output only when the other input is 1 (0).

110

22

11

2
2

r 2 C 1

r

Fig. 4.3 Gate Equivalents for Observability Calculations

The observability of a network output is 1, and since we calculate

observability from output toward input, (4.10) and (4.11) let us jump

from gate outputs to their inputs. It is not difficult to see that if

a network is fan-out free, our method of calculating observability is

now completely described and leads to precise results, just as it did

in the case of controllability.

If the network does have fan-out, care must be exercised in cal-

culating the observability of the stem of the fan-out, OBS S ' Say S

fans out into A and B. Our gate calculations permit us to calculate

OBSA and OBS These two measures are then combined to obtain OBS S

according to which of three cases holds. Before we can treat these,

however, we must define the path variable list.

The path-variable list of lead i, Pi. is the union of the lead-

variable lists L. that are associated with all the gates that lie on

the path from lead i to the output. For example, in Fig. 4.2 the path-

variable list Pd of lead d is Lc U Lb = (A} U {A,B,B} = {A,B,B} and

similarly

P = Le U La {B} U {A,A,B) = {A,A,B}

Pc = Ld U Lb {A,B} U {A,B,B} = {A,A,B,B}

If a lead has more than one path to the output, then its path list is

the union of the path list of each path. In our example, lead g has

fan-out, so

Pg = Pd U Pf fA,4,B,§}.

P = L. U Pg {A,A,B,B}, so

PA = Ph U Pc {A,A,B,B}.

We can now state the rules for calculating the observability of the

stem of a fan-out point, OBSs, in terms of the observabilities OBSA and

OBS B of the two leads A and B connected to S.

112

A. If the inversion parity of the signal on lead A is the same as

the inversion parity of the signal on lead B,

OBS = OBS + OBS (4.12)

S A B
B. If the inversion parity of the signals does not satisfy Case A,

two subcases are considered:

1. If the elements in P that appear in one form, x , do not
Aj -

appear in the opposite form, x, in P

OBS = JOBS - OBS (4.13)
s IBA OBI

2. If the condition under (1) does not hold or PA and PB have

no common elements,

OBSS = OBSA + OBSB (4.14)

As in the computation of the controllability measure, when the stated

condition is not fully met, we take the average. This can only involve

(4.13) and (4.14), since the primary condition of either A or B must be

fully met. Without loss of generality, suppose OBS A > OBSB. Then (4.13)

gives OBSA - OBSB, while (4.14) gives their sum, so that the average

will be
OBSA - OBSB + OBSA + OBSB

OBSS -= OBS A

Thus we use the larger of the two observability measures when Case B

applies, but subcases 1 and 2 are each only partially met. This is a

rather appealing feature of our computation scheme.

Keep in mind that when forming sums, we do not permit results

larger than unity. Moreover, we treat a multiple fan-out as a pyramid

(tree) of two-output cases, and again arrange these so that the stated

conditions are fully met as often as possible.

We illustrate our method of calculating the lead observabilities

by means of Fig. 4.2.

113

w.m

OBS =C *OBS 1
1 _ ii 11

a b out 16 16

OBS C 1 OBS 3 11 33
c d a 4 x 16 64

OBS C1 •OBS =-x-- i
d c a 2 x T6 32

OBSf = OBSd by symmetry, and the two fan-outs from

g satisfy Case A. So

OBS = OBS + OBS 2 x -1
g d f 32 16

OBS = C 1 OBS = 1 1 = OBS
h g 2 x 16 = 32 j

The two fan-outs from input A satisfy CASE B.

P = {A,A,B,B}C

P = {A,A,B,B}

Because Pc = PhP only (4.14) is applicable

OBS= OBS + OBSh 4, 11-55
A c = 64 32 64

Thus our result differs from the precise answer, which was previously
9

shown to be 3, by - . This is a larger error than one might like.
64n

But keep in mind that the "granularity" of our computations is 2

where n is the number of independent variables. Here n = 2, so our

granularity is 1 16

1

The major source of error lies in the value used for Cb. Using
the correct value 1 3 3 3 3 9

tb = , we get OBSa = OBSc x = 6

OBS x 3 2 OBS =I x 3 = 3 and
d 2 4 T g 8h 4 8'

B I 3 15 4
OBSA 1- - which misses the precise answer by only - .

114

wI

4.6 Some Examples

We report here on some typical results obtained in applying our

testability and observability measures.

1. Two-level, two-input exclusive-OR (NAND/NAND) circuit.

Our results were error-free except for the input observability
1

values that were off by 1-

2. Two-level, three-input exclusive-OR (NAND/NAND) circuit.

All controllability values were precise, except for the output con-
1

trollabilities, which were each calculated with an error of -
8"23

Four of the observability values were off by - and three by
1695151 = 0.33. The latter figure was obtained for the observabilities

of the three independent variables.

3. Two-level, four-input exclusive-OR (NAND/NAND) circuit.

The results were similar to the three-variable cause. The output
1

controllability was off by l and the input observability values were

off by 36%.

4. The analysis of the circuit of Fig. 4.4 gave no error greater

than nine percent. Note that this circuit has redundancy as well as

fan-out. (The bottom terminal of the AND gate can be set to 1 without

affecting the function realizedIwhich is wx + xyz.)

In general, we found that our controllability results were very

good; they were rarely above the granularity of the numbers used. The

observability values, however, did at times have substantial errors,

but only when there was a great deal of fn-out in the circuit. In fact,

in one pathological example where there was a great deal of logic

redundancy as well, the maximum error in observability was 44%. The

two-level exclusive-OR circuit is also unfavorable to our approximations.

A certain amount of this difficulty is to be expected, but the current

rules may well need some refinement, and this should be considered in

the future.

115

Fig. 4.4 Third Example

116

4.7 Testability of Sequential Circuits

To compute the testability of a sequential circuit, we will first

convert it to its iterative equivalent through the following sequence

of four steps:

(1) The output leads from all the flip-flops are broken and the breaks

are labeled with the initial conditions, i.e., with the initial values

of the state variables. (2) All of the loop-free gate structure (hence

not the flip-flops) is drawn as the typical "cell". (3) The flip-flops

are placed to the right of the typical cell and their inputs (excitations)

are properly connected to the typical cell. (4) The typical cell is

repeated and those leads that in (2) had initial conditions on them are

connected to the appropriate outputs of the appropriate flip-flops.

Steps (3) and (4) are repeated until there is at least one signal path

from an independent (primary) input to an observable output through each

flip-flop.

We illustrate the procedure in Fig. 4.5. The boxes marked D are

clocked D flip-flops and here, as everywhere, we have omitted clock con-

nections from the drawing. The conventionally drawn circuit is shown in

(a). The result of steps (1), (2) and (3) is indicated in (b) and the

completed iterative circuit is shown in (c).

As is well known, the iterative circuit is the space-sequential

equivalent (without closed loops) of the time-sequential circuit (with

closed loops). In the time sequential circuit, each input choice is

independent of the previous one, and so in the iterative circuit the

set of primary inputs to one cell is independent of that to any other

cell. Also, the observability of each of the primary outputs of each

cell is 1.

Now consider the 4-stage shift register of Fig. 4.6 (a), where

four D-flip-flops are shown in cascade. (Implicit in our representa-

tion is that z and the contents of flip-flop 4 are always the same;

they cannot differ.) This circuit can be redrawn as in (b) to

emphasize the fact that the "logic" here consists of nothing but four

wires (identity functions). Changes in Dl have no opportunity to

117

DQ1Q 1 (0)

II
Q2 (z

2D

Fig.4.5 Itertiv CiruitReprsenatio ofSequntil Cic Qi

Q2118

zw

CC

4J

Cr~ .. A 4
41

41

gI CA m

- r............................. .J *

S * NT

0'119

affect an\' the first three inputs and so four cells are

nv,. ,. iii call the number of cells the length of the iterative

I- i aud will denote it by L.

The only difference berween the iterative circuit and the circuits

which we have analyzed previously in this chapter lies in the existence

of the D flip-flops. But D flip-flops simply set the output equal to

the input; they are nothing more than a delay (hence the name), or a

synchronization means. When working properly, they do not affect the

transfer of information, and so we will treat them as short circuits

when calculating controllability and observability.

With this in mind, one finds that for every lead in the 4-bit shift
reitr 1 =cO= 11

register, C C 0 (if the inputs have controllability _,Z) and the

observability of leads everywhere is 1. Moreover, it is readily seen

that with these assumptions the observability as well as the controlla-

bility values are independent of how many cells are used, i.e., how long

the shift register is. However, it is well known that the testing of

a shift register depends greatly on its length and, in the general case,

the testing difficulty encountered with sequential circuits depends on

how deeply "buried" the flip-flops are. (A notorious case of long test

sequences results from a chain of divide-by-two circuits, i.e., long

counter circuits.)

The parameter L is a measure of how accessible the flip-flops are

to the independent (primary) inputs and how readily they communicate

with the primary (observable) outputs. At this time, we have not yet

formulated an appropriate factor, dependent on L, to modify the com-

binational controllability and observability. Perhaps it should take

the form 2-L . But we feel confident that some function of L will be

useful in reflecting the degree to which flip-flops are buried.

In cases where flip-flops other than type D are used, the links

between the cells can indeed modify the controllability and observa-

bility values. For J-K flip-flops, for example, the controllability

of the output (Q) can be calculated as follows. Consider the transition

120

i __~~ ~~ ..?., . D, . ' :-

- " ll lll ll I

table for a J-K flip-flop shown below:

JK

00 01 11 10

0 0 0 1 1

1 1 0 0 1

The row coordinates (0,1) are the state of the flip-flop (often called

Q) prior to the arrival of a clock pulse; the column coordinates are

the values of the J and K signals, respectively, during the clock pulse;

the interior entries show the resulting state of the flip-flop (often

called Q+) after the clock pulse. If P denotes the probability that

Q- = 1, and J and K1 the 1-controllability of the J and K terminals,

respectively, then

1
Q+ =1-controllability of the J-K flip-flop

= (1-P)J1 + P(l-K I) (4.15)
1

When this flip-flop occurs after Cell i, then the value of Q of the

corresponding flip-flop after Cell i-l is used for P.

With respect to the transfer of observability through the J-K

flip-flop, we suggest using

OBS(J) = (l-P) [OBS(Q)] (4.16)

because when Q = 0 a change in the J input is reflected in a change in

the output, Q+, no matter what the state of K. Similarly, we propose

OBS(K) = P [OBS(Q)] (4.17)

These seem reasonable formulations at this time, but we must point out

that we have not yet had time to assess their usefulness.

Finally, a word of caution. Formula (4.15) assumes that the signals

on leads J and K are derived from independent sets of inputs, i.e., that
1 1

the expressions for J and K share no literals. If they do, the expres-1
sion for Q must be modified. One way to do this is based on drawing

121

...........................

the gate model for the J-K flip-flop, which has feedback loops, as an

iterative circuit, as was done by M. Flomenhoft in Ref. 4.4. Then the

analysis techniques given earlier in this chapter can be used on the

iterative circuit model of the flip-flop and the solutions obtained

can then be inserted in the links between the cells. This does

increase the computational labor, and so one should seek some simpli-

fication, possibly through the use of a less precise flip-flop model.

References

4.1 E. B. Eichelberger and T. W. Williams, "A Logic Design Structure

for LSI Testing," Proc. 14th Des ,Tn Automation Conf., New Orleans,

June 1977, pp. 462-468.

4.2 S. M. Reddy, "Easily Testable Realizations for Logic Functions,"

IEEE Trans. Comp. C-21, 11, pp. 1183-1188, Nov. 1972.

4.3 A. C. L. Chiang, I. S. Reed, and A. V. Banes, "Path Sensitization,

Partial Boolean Difference, and Automated Fault Diagnosis," IEEE

Trans. Comp., C-21, 2, pp. 189-195.

4.4 M. J. Flomenhoft, "Algebraic Techniques for Finding Tests for

Logical Faults in Digital Circuits," Ph.D. Dissertation in

Electrical Engineering, Lehigh University, 1973.

122

MISSION
Of

Rom Air Development Center
RAV ptan6 and exewt &4UemaCA dvtopuet, tut and
Aetea.ted acqa~ttion ptogum. iajt 4ppoA* oi Couuwud, Contct
CoWUhfhnio0Ro6 and inteftgemce (C-711 wctivitie". TeuiWuL
and engineeiJn 6UWpot WUA~n "em4 oj teah~at compete
4A p'wvuted to ESV Ptog'Au OWj,1eA (POt&) and otheA ESP
etc~eet. The p~.Lnc4xt techhiwL fh.~iox o"ea& m~e
counictatom6D e OhIIw9ntiaA gWidaw and contWct, AC&&-
ve.Lttane oj gewund anid am'wpoace object&, ntL vuedat
cOUetiof and hdndtuig. indoation £(6pCN OU
iLonopheiud pqigdtwn, 6otid 4ta~ o.qne6 sOAsv
pkg4ie4 aad eteatoni a b.~g a~~anbL~ n
eoup~titbL~ty.

